Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 13(46): 10816-10822, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36382859

RESUMEN

The safety and energy density of solid-state batteries can be, in principle, substantially increased compared with that of conventional lithium-ion batteries. However, the use of solid-state electrolytes instead of liquid electrolytes introduces pronounced complexities to the solid-state system because of the strong coupling between different physicochemical fields. Understanding the evolution of these fields is critical to unlocking the potential of solid-state batteries. This necessitates the development of experimental and theoretical methods to track electrochemical, stress, crack, and thermal fields upon battery cycling. In this Perspective, we survey existing characterization techniques and the current understanding of multiphysics coupling in solid-state batteries. We propose that the development of experimental tools that can map multiple fields concurrently and systematic consideration of material plasticity in theoretical modeling are important for the advancement of this emerging battery technology. This Perspective provides introductory material on solid-state batteries to scientists from a broad physical chemistry community, motivating innovative and interdisciplinary studies in the future.

2.
ACS Appl Mater Interfaces ; 14(27): 31435-31447, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35767708

RESUMEN

To obtain high energy density for magnesium (Mg)-metal batteries, a promising low-cost energy storage technology, a thin Mg-metal anode of tens of micrometers must be used. However, the Coulombic efficiency (CE) and the anode utilization rate (AUR) of thin Mg metal are far from sufficient to sustain a long cycle life. This drawback is closely related to the morphological instability during galvanostatic cycling. In this work, we observed that the morphological evolution of Mg metal can be controlled with a pre-applied overpotential. With a properly pre-applied overpotential (e.g., -0.5 V), we show that the average AUR and the average CE of thin Mg metal (16 µm, equivalent to 6 mA h cm-2) in a Mg/Mo asymmetric cell can be substantially improved from 29.8 to 74.8% and from 97.7 to 99.5%, respectively, under a practical current density of 2 mA cm-2. These advances can theoretically improve the energy density and cycle life of Mg-S batteries to more than 1000 W h kg-1 and 100 cycles, respectively. This work deepens our understanding of the morphological and compositional evolution of Mg metal during stripping and plating processes and suggests a facile and effective method to substantially improve the cycling stability of thin Mg metal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA