Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0124924, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162260

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus continues to cause severe disease and deaths in many parts of the world, despite massive vaccination efforts. Antiviral drugs to curb an ongoing infection remain a priority. The virus-encoded 3C-like main protease (MPro; nsp5) is seen as a promising target. Here, with a positive selection genetic system engineered in Saccharomyces cerevisiae using cleavage and release of MazF toxin as an indicator, we screened in a robotized setup small molecule libraries comprising ~2,500 compounds for MPro inhibitors. We detected eight compounds as effective against MPro expressed in yeast, five of which are characterized proteasome inhibitors. Molecular docking indicates that most of these bind covalently to the MPro catalytically active cysteine. Compounds were confirmed as MPro inhibitors in an in vitro enzymatic assay. Among those were three previously only predicted in silico; the boron-containing proteasome inhibitors bortezomib, delanzomib, and ixazomib. Importantly, we establish reaction conditions in vitro preserving the MPro-inhibitory activity of the boron-containing drugs. These differ from the standard conditions, which may explain why boron compounds have gone undetected in screens based on enzymatic in vitro assays. Our screening system is robust and can find inhibitors of a specific protease that are biostable, able to penetrate a cell membrane, and are not generally toxic. As a cellular assay, it can detect inhibitors that fail in a screen based on an in vitro enzymatic assay using standardized conditions, and now give support for boron compounds as MPro inhibitors. This method can also be adapted for other viral proteases.IMPORTANCEThe coronavirus disease 2019 (COVID-19) pandemic triggered the realization that we need flexible approaches to find treatments for emerging viral threats. We implemented a genetically engineered platform in yeast to detect inhibitors of the virus's main protease (MPro), a promising target to curb severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Screening molecule libraries, we identified candidate inhibitors and verified them in a biochemical assay. Moreover, the system detected boron-containing molecules as MPro inhibitors. Those were previously predicted computationally but never shown effective in a biochemical assay. Here, we demonstrate that they require a non-standard reaction buffer to function as MPro inhibitors. Hence, our cell-based method detects protease inhibitors missed by other approaches and provides support for the boron-containing molecules. We have thus demonstrated that our platform can screen large numbers of chemicals to find potential inhibitors of a viral protease. Importantly, the platform can be modified to detect protease targets from other emerging viruses.

2.
RNA Biol ; 21(1): 1-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38711165

RESUMEN

Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.


Asunto(s)
Intrones , Fenotipo , Empalme del ARN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Empalmosomas , Empalmosomas/metabolismo , Empalmosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Histonas/metabolismo , Histonas/genética
3.
J Med Chem ; 67(9): 7312-7329, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38680035

RESUMEN

N-myristoyltransferase (NMT) is a promising antimalarial drug target. Despite biochemical similarities between Plasmodium vivax and human NMTs, our recent research demonstrated that high selectivity is achievable. Herein, we report PvNMT-inhibiting compounds aimed at identifying novel mechanisms of selectivity. Various functional groups are appended to a pyrazole moiety in the inhibitor to target a pocket formed beneath the peptide binding cleft. The inhibitor core group polarity, lipophilicity, and size are also varied to probe the water structure near a channel. Selectivity index values range from 0.8 to 125.3. Cocrystal structures of two selective compounds, determined at 1.97 and 2.43 Å, show that extensions bind the targeted pocket but with different stabilities. A bulky naphthalene moiety introduced into the core binds next to instead of displacing protein-bound waters, causing a shift in the inhibitor position and expanding the binding site. Our structure-activity data provide a conceptual foundation for guiding future inhibitor optimizations.


Asunto(s)
Aciltransferasas , Antimaláricos , Inhibidores Enzimáticos , Plasmodium vivax , Pirazoles , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Plasmodium vivax/enzimología , Plasmodium vivax/efectos de los fármacos , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Aciltransferasas/química , Relación Estructura-Actividad , Antimaláricos/química , Antimaláricos/farmacología , Antimaláricos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Sitios de Unión
4.
Res Sq ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38463971

RESUMEN

Malaria remains a significant public health challenge, with Plasmodium vivax being the species responsible for the most prevalent form of the disease. Given the limited therapeutic options available, the search for new antimalarials against P. vivax is urgent. This study aims to identify new inhibitors for P. vivax N-myristoyltransferase (PvNMT), an essential drug target against malaria. Through a validated virtual screening campaign, we prioritized 23 candidates for further testing. In the yeast NMT system, seven compounds exhibit a potential inhibitor phenotype. In vitro antimalarial phenotypic assays confirmed the activity of four candidates while demonstrating an absence of cytotoxicity. Enzymatic assays reveal LabMol-394 as the most promising inhibitor, displaying selectivity against the parasite and a strong correlation within the yeast system. Furthermore, molecular dynamics simulations shed some light into its binding mode. This study constitutes a substantial contribution to the exploration of a selective quinoline scaffold and provides valuable insights into the development of new antimalarial candidates.

5.
RSC Med Chem ; 14(11): 2277-2300, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38020072

RESUMEN

The upswing of antibiotic resistance is an escalating threat to human health. Resistance mediated by bacterial metallo-ß-lactamases is of particular concern as these enzymes degrade ß-lactams, our most frequently prescribed class of antibiotics. Inhibition of metallo-ß-lactamases could allow the continued use of existing ß-lactam antibiotics, such as penicillins, cephalosporins and carbapenems, whose applicability is becoming ever more limited. The design, synthesis, and NDM-1, VIM-2, and GIM-1 inhibitory activities (IC50 4.1-506 µM) of a series of novel non-cytotoxic α-aminophosphonate-based inhibitor candidates are presented herein. We disclose the solution NMR spectroscopic and computational investigation of their NDM-1 and VIM-2 binding sites and binding modes. Whereas the binding modes of the inhibitors are similar, VIM-2 showed a somewhat higher conformational flexibility, and complexed a larger number of inhibitor candidates in more varying binding modes than NDM-1. Phosphonate-type inhibitors may be potential candidates for development into therapeutics to combat metallo-ß-lactamase resistant bacteria.

6.
Antimicrob Agents Chemother ; 67(11): e0058923, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37819090

RESUMEN

Drug resistance to commercially available antimalarials is a major obstacle in malaria control and elimination, creating the need to find new antiparasitic compounds with novel mechanisms of action. The success of kinase inhibitors for oncological treatments has paved the way for the exploitation of protein kinases as drug targets in various diseases, including malaria. Casein kinases are ubiquitous serine/threonine kinases involved in a wide range of cellular processes such as mitotic checkpoint signaling, DNA damage response, and circadian rhythm. In Plasmodium, it is suggested that these protein kinases are essential for both asexual and sexual blood-stage parasites, reinforcing their potential as targets for multi-stage antimalarials. To identify new putative PfCK2α inhibitors, we utilized an in silico chemogenomic strategy involving virtual screening with docking simulations and quantitative structure-activity relationship predictions. Our investigation resulted in the discovery of a new quinazoline molecule (542), which exhibited potent activity against asexual blood stages and a high selectivity index (>100). Subsequently, we conducted chemical-genetic interaction analysis on yeasts with mutations in casein kinases. Our chemical-genetic interaction results are consistent with the hypothesis that 542 inhibits yeast Cka1, which has a hinge region with high similarity to PfCK2α. This finding is in agreement with our in silico results suggesting that 542 inhibits PfCK2α via hinge region interaction.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Plasmodium , Antimaláricos/farmacología , Quinasa de la Caseína II/antagonistas & inhibidores , Malaria/tratamiento farmacológico , Malaria/parasitología , Malaria Falciparum/parasitología , Plasmodium/metabolismo , Plasmodium falciparum
7.
Nat Commun ; 14(1): 5408, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669940

RESUMEN

Drugs targeting multiple stages of the Plasmodium vivax life cycle are needed to reduce the health and economic burdens caused by malaria worldwide. N-myristoyltransferase (NMT) is an essential eukaryotic enzyme and a validated drug target for combating malaria. However, previous PvNMT inhibitors have failed due to their low selectivity over human NMTs. Herein, we apply a structure-guided hybridization approach combining chemical moieties of previously reported NMT inhibitors to develop the next generation of PvNMT inhibitors. A high-resolution crystal structure of PvNMT bound to a representative selective hybrid compound reveals a unique binding site architecture that includes a selective conformation of a key tyrosine residue. The hybridized compounds significantly decrease P. falciparum blood-stage parasite load and consistently exhibit dose-dependent inhibition of P. vivax liver stage schizonts and hypnozoites. Our data demonstrate that hybridized NMT inhibitors can be multistage antimalarials, targeting dormant and developing forms of liver and blood stage.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Humanos , Animales , Plasmodium vivax , Esquizontes , Hígado , Aciltransferasas
8.
J Nat Prod ; 86(2): 380-389, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36749598

RESUMEN

Six new crotofolane diterpenoids (1-6) and 13 known compounds (7-19) were isolated from the MeOH-CH2Cl2 (1:1, v/v) extracts of the leaves and stem bark of Croton kilwae. The structures of the new compounds were elucidated by extensive analysis of spectroscopic and mass spectrometric data. The structure of crotokilwaepoxide A (1) was confirmed by single-crystal X-ray diffraction, allowing for the determination of its absolute configuration. The crude extracts and the isolated compounds were investigated for antiviral activity against respiratory syncytial virus (RSV) and human rhinovirus type-2 (HRV-2) in HEp-2 and HeLa cells, respectively, for antibacterial activity against the Gram-positive Bacillus subtilis and the Gram-negative Escherichia coli, and for antimalarial activity against the Plasmodium falciparum Dd2 strain. ent-3ß,19-Dihydroxykaur-16-ene (7) and ayanin (16) displayed anti-RSV activities with IC50 values of 10.2 and 6.1 µM, respectively, while exhibiting only modest cytotoxic effects on HEp-2 cells that resulted in selectivity indices of 4.9 and 16.4. Compounds 2 and 5 exhibited modest anti-HRV-2 activity (IC50 of 44.6 µM for both compounds), while compound 16 inhibited HRV-2 with an IC50 value of 1.8 µM. Compounds 1-3 showed promising antiplasmodial activities (80-100% inhibition) at a 50 µM concentration.


Asunto(s)
Antimaláricos , Croton , Diterpenos , Humanos , Antimaláricos/farmacología , Croton/química , Cristalografía por Rayos X , Diterpenos/química , Células HeLa , Estructura Molecular , Extractos Vegetales/química
9.
Antibiotics (Basel) ; 11(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36009984

RESUMEN

Antibiotic resistance among bacteria is a growing global challenge. A major reason for this is the limited progress in developing new classes of antibiotics active against Gram-negative bacteria. Here, we investigate the antibacterial activity of a dicationic bisguanidine-arylfuran, originally developed as an antitrypanosomal agent, and new derivatives thereof. The compounds showed good activity (EC50 2-20 µM) against antibiotic-resistant isolates of the Gram-negative members of the ESKAPE group (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) and Escherichia coli with different antibiotic susceptibility patterns, including ESBL isolates. Cytotoxicity was moderate, and several of the new derivatives were less cytotoxic than the lead molecule, offering better selectivity indices (40-80 for several ESKAPE isolates). The molecular mechanism for the antibacterial activity of these molecules is unknown, but sensitivity profiling against human ESKAPE isolates and E. coli collections with known susceptibility patterns against established antibiotics indicates that it is distinct from lactam and quinolone antibiotics.

10.
Nat Commun ; 13(1): 3701, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764627

RESUMEN

Stress granules (SGs) are non-membranous organelles facilitating stress responses and linking the pathology of age-related diseases. In a genome-wide imaging-based phenomic screen, we identify Pab1 co-localizing proteins under 2-deoxy-D-glucose (2-DG) induced stress in Saccharomyces cerevisiae. We find that deletion of one of the Pab1 co-localizing proteins, Lsm7, leads to a significant decrease in SG formation. Under 2-DG stress, Lsm7 rapidly forms foci that assist in SG formation. The Lsm7 foci form via liquid-liquid phase separation, and the intrinsically disordered region and the hydrophobic clusters within the Lsm7 sequence are the internal driving forces in promoting Lsm7 phase separation. The dynamic Lsm7 phase-separated condensates appear to work as seeding scaffolds, promoting Pab1 demixing and subsequent SG initiation, seemingly mediated by RNA interactions. The SG initiation mechanism, via Lsm7 phase separation, identified in this work provides valuable clues for understanding the mechanisms underlying SG formation and SG-associated human diseases.


Asunto(s)
Fenómenos Bioquímicos , Proteínas de Saccharomyces cerevisiae , Gránulos Citoplasmáticos/metabolismo , Humanos , Proteínas de Unión a Poli(A)/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Gránulos de Estrés
11.
FEMS Yeast Res ; 22(1)2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35561747

RESUMEN

To remain competitive, cells exposed to stress of varying duration, rapidity of onset, and intensity, have to balance their expenditure on growth and proliferation versus stress protection. To a large degree dependent on the time scale of stress exposure, the different levels of gene expression control: transcriptional, post-transcriptional, and post-translational, will be engaged in stress responses. The post-transcriptional level is appropriate for minute-scale responses to transient stress, and for recovery upon return to normal conditions. The turnover rate, translational activity, covalent modifications, and subcellular localisation of RNA species are regulated under stress by multiple cellular pathways. The interplay between these pathways is required to achieve the appropriate signalling intensity and prevent undue triggering of stress-activated pathways at low stress levels, avoid overshoot, and down-regulate the response in a timely fashion. As much of our understanding of post-transcriptional regulation has been gained in yeast, this review is written with a yeast bias, but attempts to generalise to other eukaryotes. It summarises aspects of how post-transcriptional events in eukaryotes mitigate short-term environmental stresses, and how different pathways interact to optimise the stress response under shifting external conditions.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Regulación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Estrés Fisiológico
12.
RNA ; 28(6): 905-915, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35296539

RESUMEN

Gene expression analysis requires accurate measurements of global RNA degradation rates, earlier problematic with methods disruptive to cell physiology. Recently, metabolic RNA labeling emerged as an efficient and minimally invasive technique applied in mammalian cells. Here, we have adapted SH-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) for a global mRNA stability study in yeast using 4-thiouracil pulse-chase labeling. We assign high-confidence half-life estimates for 67.5% of expressed ORFs, and measure a median half-life of 9.4 min. For mRNAs where half-life estimates exist in the literature, their ranking order was in good agreement with previous data, indicating that SLAM-seq efficiently classifies stable and unstable transcripts. We then leveraged our yeast protocol to identify targets of the nonsense-mediated decay (NMD) pathway by measuring the change in RNA half-lives, instead of steady-state RNA level changes. With SLAM-seq, we assign 580 transcripts as putative NMD targets, based on their measured half-lives in wild-type and upf3Δ mutants. We find 225 novel targets, and observe a strong agreement with previous reports of NMD targets, 61.2% of our candidates being identified in previous studies. This indicates that SLAM-seq is a simpler and more economic method for global quantification of mRNA half-lives. Our adaptation for yeast yielded global quantitative measures of the NMD effect on transcript half-lives, high correlation with RNA half-lives measured previously with more technically challenging protocols, and identification of novel NMD regulated transcripts that escaped prior detection.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Mamíferos/genética , Degradación de ARNm Mediada por Codón sin Sentido , Sistemas de Lectura Abierta , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
13.
mSystems ; 6(6): e0108721, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34812651

RESUMEN

The ongoing COVID-19 pandemic urges searches for antiviral agents that can block infection or ameliorate its symptoms. Using dissimilar search strategies for new antivirals will improve our overall chances of finding effective treatments. Here, we have established an experimental platform for screening of small molecule inhibitors of the SARS-CoV-2 main protease in Saccharomyces cerevisiae cells, genetically engineered to enhance cellular uptake of small molecules in the environment. The system consists of a fusion of the Escherichia coli toxin MazF and its antitoxin MazE, with insertion of a protease cleavage site in the linker peptide connecting the MazE and MazF moieties. Expression of the viral protease confers cleavage of the MazEF fusion, releasing the MazF toxin from its antitoxin, resulting in growth inhibition. In the presence of a small molecule inhibiting the protease, cleavage is blocked and the MazF toxin remains inhibited, promoting growth. The system thus allows positive selection for inhibitors. The engineered yeast strain is tagged with a fluorescent marker protein, allowing precise monitoring of its growth in the presence or absence of inhibitor. We detect an established main protease inhibitor by a robust growth increase, discernible down to 1 µM. The system is suitable for robotized large-scale screens. It allows in vivo evaluation of drug candidates and is rapidly adaptable for new variants of the protease with deviant site specificities. IMPORTANCE The COVID-19 pandemic may continue for several years before vaccination campaigns can put an end to it globally. Thus, the need for discovery of new antiviral drug candidates will remain. We have engineered a system in yeast cells for the detection of small molecule inhibitors of one attractive drug target of SARS-CoV-2, its main protease, which is required for viral replication. The ability to detect inhibitors in live cells brings the advantage that only compounds capable of entering the cell and remain stable there will score in the system. Moreover, because of its design in yeast cells, the system is rapidly adaptable for tuning the detection level and eventual modification of the protease cleavage site in the case of future mutant variants of the SARS-CoV-2 main protease or even for other proteases.

14.
J Nat Prod ; 84(12): 3080-3089, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34802242

RESUMEN

Five new cyclohexene derivatives, dipandensin A and B (1 and 2) and pandensenols A-C (3-5), and 16 known secondary metabolites (6-21) were isolated from the methanol-soluble extracts of the stem and root barks of Uvaria pandensis. The structures were characterized by NMR spectroscopic and mass spectrometric analyses, and that of 6-methoxyzeylenol (6) was further confirmed by single-crystal X-ray crystallography, which also established its absolute configuration. The isolated metabolites were evaluated for antibacterial activity against the Gram-positive bacteria Bacillus subtilis and Staphylococcus epidermidis and the Gram-negative bacteria Enterococcus raffinosus, Escherichia coli, Paraburkholderia caledonica, Pectobacterium carotovorum, and Pseudomonas putida, as well as for cytotoxicity against the MCF-7 human breast cancer cell line. A mixture of uvaretin (20) and isouvaretin (21) exhibited significant antibacterial activity against B. subtilis (EC50 8.7 µM) and S. epidermidis (IC50 7.9 µM). (8'α,9'ß-Dihydroxy)-3-farnesylindole (12) showed strong inhibitory activity (EC50 9.8 µM) against B. subtilis, comparable to the clinical reference ampicillin (EC50 17.9 µM). None of the compounds showed relevant cytotoxicity against the MCF-7 human breast cancer cell line.


Asunto(s)
Ciclohexenos/química , Oxígeno/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Tallos de la Planta/química , Uvaria/química , Cristalografía por Rayos X/métodos , Ciclohexenos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química
15.
Life (Basel) ; 11(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807495

RESUMEN

Small molecules are routinely used to inhibit protein kinases, but modulators capable of enhancing kinase activity are rare. We have previously shown that the small molecule INR119, designed as an inhibitor of MEK1/2, will enhance the activity of its fission yeast homologue, Wis1, under oxidative stress. To investigate the generality of these findings, we now study the effect of INR119 in human cells under similar conditions. Cells of the established breast cancer line MCF-7 were exposed to H2O2 or phenothiazines, alone or combined with INR119. In line with the previous results in fission yeast, the phosphorylation of the MAPKs ERK and p38 increased substantially more with the combination treatment than by H2O2 or phenothiazines, whereas INR119 alone did not affect phosphorylation. We also measured the mRNA levels of TP53 and BAX, known to be affected by ERK and p38 activity. Similarly, the combination of INR119 and phenothiazines increased both mRNAs to higher levels than for phenothiazines alone. In conclusion, the mechanism of action of INR119 on its target protein kinase may be conserved between yeast and humans.

16.
ACS Infect Dis ; 7(4): 759-776, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33689276

RESUMEN

Antimalarial drugs with novel modes of action and wide therapeutic potential are needed to pave the way for malaria eradication. Violacein is a natural compound known for its biological activity against cancer cells and several pathogens, including the malaria parasite, Plasmodium falciparum (Pf). Herein, using chemical genomic profiling (CGP), we found that violacein affects protein homeostasis. Mechanistically, violacein binds Pf chaperones, PfHsp90 and PfHsp70-1, compromising the latter's ATPase and chaperone activities. Additionally, violacein-treated parasites exhibited increased protein unfolding and proteasomal degradation. The uncoupling of the parasite stress response reflects the multistage growth inhibitory effect promoted by violacein. Despite evidence of proteotoxic stress, violacein did not inhibit global protein synthesis via UPR activation-a process that is highly dependent on chaperones, in agreement with the notion of a violacein-induced proteostasis collapse. Our data highlight the importance of a functioning chaperone-proteasome system for parasite development and differentiation. Thus, a violacein-like small molecule might provide a good scaffold for development of a novel probe for examining the molecular chaperone network and/or antiplasmodial drug design.


Asunto(s)
Antimaláricos , Antimaláricos/farmacología , Indoles/farmacología , Chaperonas Moleculares , Plasmodium falciparum
17.
Fitoterapia ; 151: 104857, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33582268

RESUMEN

The new isoflavonoid kirkinone A (1) and biflavonoid kirkinone B (2) along with six known compounds (3-8) were isolated from the methanolic extract of the root bark of Ochna kirkii. The compounds were identified by NMR spectroscopic and mass spectrometric analyses. Out of the eight isolated natural products, calodenin B (4) and lophirone A (6) showed significant antibacterial activity against the Gram-positive bacterium Bacillus subtilis with MIC values of 2.2 and 28 µM, and cytotoxicity against the MCF-7 human breast cancer cell line with EC50 values of 219.3 and 19.2 µM, respectively. The methanolic crude extract of the root bark exhibited cytotoxicity at EC50 8.4 µg/mL. The isolated secondary metabolites and the crude extract were generally inactive against the Gram-negative Escherichia coli (MIC ≥400 µg/mL). Isolation of biflavonoids and related secondary metabolites from O. kirkii demonstrates their chemotaxonomic significance to the genus Ochna and to other members of the family Ochnaceae.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos Fitogénicos/farmacología , Biflavonoides/farmacología , Ochnaceae/química , Antibacterianos/aislamiento & purificación , Antineoplásicos Fitogénicos/aislamiento & purificación , Bacillus subtilis/efectos de los fármacos , Biflavonoides/aislamiento & purificación , Humanos , Células MCF-7 , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Corteza de la Planta/química , Raíces de Plantas/química , Tanzanía
18.
J Nat Prod ; 84(2): 364-372, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33511842

RESUMEN

Two new biflavanones (1 and 2), three new bichalconoids (3-5), and 11 known flavonoid analogues (6-16) were isolated from the stem bark extract (CH3OH-CH2Cl2, 7:3, v/v) of Ochna holstii. The structures of the isolated metabolites were elucidated by NMR spectroscopic and mass spectrometric analyses. The crude extract and the isolated metabolites were evaluated for antibacterial activity against Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) as well as for cytotoxicity against the MCF-7 human breast cancer cell line. The crude extract and holstiinone A (1) exhibited moderate antibacterial activity against B. subtilis with MIC values of 9.1 µg/mL and 14 µM, respectively. The crude extract and lophirone F (14) showed cytotoxicity against MCF-7 with EC50 values of 11 µg/mL and 24 µM, respectively. The other isolated metabolites showed no significant antibacterial activities (MIC > 250 µM) and cytotoxicities (EC50 ≥ 350 µM).


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos Fitogénicos/farmacología , Chalconas/farmacología , Flavonoides/farmacología , Ochnaceae/química , Antibacterianos/aislamiento & purificación , Antineoplásicos Fitogénicos/aislamiento & purificación , Bacillus subtilis/efectos de los fármacos , Chalconas/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Flavonoides/aislamiento & purificación , Humanos , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Corteza de la Planta/química , Extractos Vegetales/química , Tanzanía
19.
Fitoterapia ; 149: 104809, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33359421

RESUMEN

Two new prenylated dihydrochalcones (1,2) and eighteen known secondary metabolites (3-20) were isolated from the CH2Cl2-MeOH (1:1) extracts of the roots, the stem bark and the leaves of Eriosema montanum Baker f. (Leguminosae). The structures of the isolated compounds were characterized by NMR, IR, and UV spectroscopic and mass spectrometric analyses. The structures of compounds 5, 10, 11 and 13 were confirmed by single crystal X-ray diffraction. The antibacterial activity of the crude extracts and the isolated constituents were established against Gram-positive and Gram-negative bacteria. Among the tested compounds, 1-4 and 10 showed strong activity against the Gram-positive bacterium Bacillus subtilis with minimum inhibitory concentration (MIC) ranging from 3.1 to 8.9 µM, as did the leaf crude extract with an MIC of 3.0 µg/mL. None of the crude extracts nor the isolated compounds were active against Escherichia coli. Compounds 1, 3 and 4 showed higher cytotoxicity, evaluated against the human breast cancer cell line MCF-7, with EC50 of 7.0, 18.0 and 18.0 µM, respectively. These findings contribute to the phytochemical understanding of the genus Eriosema, and highlight the pharmaceutical potential of prenylated dihydrochalcones.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos Fitogénicos/farmacología , Chalconas/farmacología , Fabaceae/química , Antibacterianos/aislamiento & purificación , Antineoplásicos Fitogénicos/aislamiento & purificación , Chalconas/aislamiento & purificación , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Corteza de la Planta/química , Hojas de la Planta/química , Raíces de Plantas/química , Prenilación , Rwanda , Metabolismo Secundario
20.
mSystems ; 5(6)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33361328

RESUMEN

The rapid horizontal transmission of antibiotic resistance genes on conjugative plasmids between bacterial host cells is a major cause of the accelerating antibiotic resistance crisis. There are currently no experimental platforms for fast and cost-efficient screening of genetic effects on antibiotic resistance transmission by conjugation, which prevents understanding and targeting conjugation. We introduce a novel experimental framework to screen for conjugation-based horizontal transmission of antibiotic resistance between >60,000 pairs of cell populations in parallel. Plasmid-carrying donor strains are constructed in high-throughput. We then mix the resistance plasmid-carrying donors with recipients in a design where only transconjugants can reproduce, measure growth in dense intervals, and extract transmission times as the growth lag. As proof-of-principle, we exhaustively explore chromosomal genes controlling F-plasmid donation within Escherichia coli populations, by screening the Keio deletion collection in high replication. We recover all seven known chromosomal gene mutants affecting conjugation as donors and identify many novel mutants, all of which diminish antibiotic resistance transmission. We validate nine of the novel genes' effects in liquid mating assays and complement one of the novel genes' effect on conjugation (rseA). The new framework holds great potential for exhaustive disclosing of candidate targets for helper drugs that delay resistance development in patients and societies and improve the longevity of current and future antibiotics. Further, the platform can easily be adapted to explore interspecies conjugation, plasmid-borne factors, and experimental evolution and be used for rapid construction of strains.IMPORTANCE The rapid transmission of antibiotic resistance genes on conjugative plasmids between bacterial host cells is a major cause of the accelerating antibiotic resistance crisis. There are currently no experimental platforms for fast and cost-efficient screening of genetic effects on antibiotic resistance transmission by conjugation, which prevents understanding and targeting conjugation. We introduce a novel experimental framework to screen for conjugation-based horizontal transmission of antibiotic resistance between >60,000 pairs of cell populations in parallel. As proof-of-principle, we exhaustively explore chromosomal genes controlling F-plasmid donation within E. coli populations. We recover all previously known and many novel chromosomal gene mutants that affect conjugation efficiency. The new framework holds great potential for rapid screening of compounds that decrease transmission. Further, the platform can easily be adapted to explore interspecies conjugation, plasmid-borne factors, and experimental evolution and be used for rapid construction of strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA