Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nat Methods ; 21(6): 974-982, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38622459

RESUMEN

The simultaneous measurement of three-dimensional (3D) genome structure and gene expression of individual cells is critical for understanding a genome's structure-function relationship, yet this is challenging for existing methods. Here we present 'Linking mRNA to Chromatin Architecture (LiMCA)', which jointly profiles the 3D genome and transcriptome with exceptional sensitivity and from low-input materials. Combining LiMCA and our high-resolution scATAC-seq assay, METATAC, we successfully characterized chromatin accessibility, as well as paired 3D genome structures and gene expression information, of individual developing olfactory sensory neurons. We expanded the repertoire of known olfactory receptor (OR) enhancers and discovered unexpected rules of their dynamics: OR genes and their enhancers are most accessible during early differentiation. Furthermore, we revealed the dynamic spatial relationship between ORs and enhancers behind stepwise OR expression. These findings offer valuable insights into how 3D connectivity of ORs and enhancers dynamically orchestrate the 'one neuron-one receptor' selection process.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Neuronas Receptoras Olfatorias , Receptores Odorantes , Análisis de la Célula Individual , Animales , Neuronas Receptoras Olfatorias/metabolismo , Análisis de la Célula Individual/métodos , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Ratones , Perfilación de la Expresión Génica/métodos , Cromatina/genética , Cromatina/metabolismo , Genoma , Transcriptoma , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-507787

RESUMEN

Continuous evolution of Omicron has led to a rapid and simultaneous emergence of numerous variants that display growth advantages over BA. 5. Despite their divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots. The driving force and destination of such convergent evolution and its impact on humoral immunity remain unclear. Here, we demonstrate that these convergent mutations can cause striking evasion of neutralizing antibody (NAb) drugs and convalescent plasma, including those from BA.5 breakthrough infection, while maintaining sufficient ACE2 binding capability. BQ.1.1.10, BA.4.6.3, XBB, and CH. 1.1 are the most antibody-evasive strain tested, even exceeding SARS-CoV-1 level. To delineate the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies (mAbs) isolated from BA.2 and BA.5 breakthrough-infection convalescents. Importantly, due to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection caused significant reductions in the epitope diversity of NAbs and increased proportion of non-neutralizing mAbs, which in turn concentrated humoral immune pressure and promoted convergent evolution. Moreover, we showed that the convergent RBD mutations could be accurately inferred by integrated deep mutational scanning (DMS) profiles, and the evolution trends of BA.2.75/BA.5 subvariants could be well-simulated through constructed convergent pseudovirus mutants. Together, our results suggest current herd immunity and BA.5 vaccine boosters may not provide good protection against infection. Broad-spectrum SARS-CoV-2 vaccines and NAb drugs development should be highly prioritized, and the constructed mutants could help to examine their effectiveness in advance.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-503384

RESUMEN

Multiple BA.4 and BA.5 subvariants with R346 mutations on the spike glycoprotein have been identified in various countries, such as BA.4.6/BF.7 harboring R346T, BA.4.7 harboring R346S, and BA.5.9 harboring R346I. These subvariants, especially BA.4.6, exhibit substantial growth advantages compared to BA.4/BA.5. In this study, we showed that BA.4.6, BA.4.7, and BA.5.9 displayed higher humoral immunity evasion capability than BA.4/BA.5, causing 1.5 to 1.9-fold decrease in NT50 of the plasma from BA.1 and BA.2 breakthrough-infection convalescents compared to BA.4/BA.5. Importantly, plasma from BA.5 breakthrough-infection convalescents also exhibits significant neutralization activity decrease against BA.4.6, BA.4.7, and BA.5.9 than BA.4/BA.5, showing on average 2.4 to 2.6-fold decrease in NT50. For neutralizing antibody drugs, Bebtelovimab remains potent, while Evusheld is completely escaped by these subvariants. Together, our results rationalize the prevailing advantages of the R346 mutated BA.4/BA.5 subvariants and urge the close monitoring of these mutants, which could lead to the next wave of the pandemic.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-499114

RESUMEN

SARS-CoV-2 Omicron sublineages have escaped most RBD-targeting therapeutic neutralizing antibodies (NAbs), which proves the previous NAb drug screening strategies deficient against the fast-evolving SARS-CoV-2. Better broad NAb drug candidate selection methods are needed. Here, we describe a rational approach for identifying RBD-targeting broad SARS-CoV-2 NAb cocktails. Based on high-throughput epitope determination, we propose that broad NAb drugs should target non-immunodominant RBD epitopes to avoid herd immunity-directed escape mutations. Also, their interacting antigen residues should focus on sarbecovirus conserved sites and associate with critical viral functions, making the antibody-escaping mutations less likely to appear. Following the criteria, a featured non-competing antibody cocktail, SA55+SA58, is identified from a large collection of broad sarbecovirus NAbs isolated from SARS convalescents. SA55+SA58 potently neutralizes ACE2-utilizing sarbecoviruses, including circulating Omicron variants, and could serve as broad SARS-CoV-2 prophylactics to offer long-term protection. Our screening strategy can also be applied to identify broad-spectrum NAb drugs against other fast-evolving viruses, such as influenza viruses.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-500332

RESUMEN

Recently emerged SARS-CoV-2 Omicron subvariant, BA.2.75, displayed a local growth advantage over BA.2.38, BA.2.76 and BA.5 in India. The underlying mechanism of BA.2.75s enhanced infectivity, especially compared to BA.5, remains unclear. Here, we show that BA.2.75 exhibits substantially higher ACE2-binding affinity than BA.5. Also, BA.2.75 spike shows decreased thermostability and increased "up" RBD conformation in acidic conditions, suggesting enhanced low-pH-endosomal cell-entry pathway utilization. BA.2.75 is less humoral immune evasive than BA.4/BA.5 in BA.1/BA.2 breakthrough-infection convalescents; however, BA.2.75 shows heavier neutralization evasion in Delta breakthrough-infection convalescents. Importantly, plasma from BA.5 breakthrough infection exhibit significantly weaker neutralization against BA.2.75 than BA.5, mainly due to BA.2.75s distinct RBD and NTD-targeting antibody escaping pattern from BA.4/BA.5. Additionally, Evusheld and Bebtelovimab remain effective against BA.2.75, and Sotrovimab recovered RBD-binding affinity. Together, our results suggest BA.2.75 may prevail after the global BA.4/BA.5 wave, and its increased receptor-binding capability could allow further incorporation of immune-evasive mutations.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-489997

RESUMEN

SARS-CoV-2 Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility over BA.21. The new variants receptor binding and immune evasion capability require immediate investigation. Here, coupled with Spike structural comparisons, we show that BA.2.12.1 and BA.4/BA.5 exhibit comparable ACE2-binding affinities to BA.2. Importantly, BA.2.12.1 and BA.4/BA.5 display stronger neutralization evasion than BA.2 against the plasma from 3-dose vaccination and, most strikingly, from post-vaccination BA.1 infections. To delineate the underlying antibody evasion mechanism, we determined the escaping mutation profiles2, epitope distribution3 and Omicron neutralization efficacy of 1640 RBD-directed neutralizing antibodies (NAbs), including 614 isolated from BA.1 convalescents. Interestingly, post-vaccination BA.1 infection mainly recalls wildtype-induced humoral memory. The resulting elicited antibodies could neutralize both wildtype and BA.1 and are enriched on non-ACE2-competing epitopes. However, most of these cross-reactive NAbs are heavily escaped by L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1; nevertheless, these NAbs are largely escaped by BA.2/BA.4/BA.5 due to D405N and F486V, and react weakly to pre-Omicron variants, exhibiting poor neutralization breadths. As for therapeutic NAbs, Bebtelovimab4 and Cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, while the S371F, D405N and R408S mutations would undermine most broad sarbecovirus NAbs. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22273653

RESUMEN

BackgroundSARS-CoV-2 Omicron variant BA.1 first emerged on the Chinese mainland in January 2022 in Tianjin and caused a large wave of infections. During mass PCR testing, a total of 430 cases infected with Omicron were recorded between January 8 and February 7, 2022, with no new infections detected for the following 16 days. Most patients had been vaccinated with SARS-CoV-2 inactivated vaccines. The disease profile associated with BA.1 infection, especially after vaccination with inactivated vaccines, is unclear. Whether BA.1 breakthrough infection after receiving inactivated vaccine could create a strong enough humoral immunity barrier against Omicron is not yet investigated. MethodsWe collected the clinical information and vaccination history of the 430 COVID-19 patients infected with Omicron BA.1. Re-positive cases and inflammation markers were monitored during the patients convalescence phase. Ordered multiclass logistic regression model was used to identify risk factors for COVID-19 disease severity. Authentic virus neutralization assays against SARS-CoV-2 wildtype, Beta and Omicron BA.1 were conducted to examine the plasma neutralizing titers induced after post-vaccination Omicron BA.1 infection, and were compared to a group of uninfected healthy individuals who were selected to have a matched vaccination profile. FindingsAmong the 430 patients, 316 (73.5%) were adults with a median age of 47 years, and 114 (26.5%) were under-age with a median age of 10 years. Female and male patients account for 55.6% and 44.4%, respectively. Most of the patients presented with mild (47.7%) to moderate diseases (50.2%), with only 2 severe cases (0.5%) and 7 (1.6%) asymptomatic infections. No death was recorded. 341 (79.3%) of the 430 patients received inactivated vaccines (54.3% BBIBP-CorV vs. 45.5% CoronaVac), 49 (11.4%) received adenovirus-vectored vaccines (Ad5-nCoV), 2 (0.5%) received recombinant protein subunit vaccines (ZF2001), and 38 (8.8%) received no vaccination. No vaccination is associated with a substantially higher ICU admission rate among Omicron BA.1 infected patients (2.0% for vaccinated patients vs. 23.7% for unvaccinated patients, P<0.001). Compared with adults, child patients presented with less severe illness (82.5% mild cases for children vs. 35.1% for adults, P<0.001), no ICU admission, fewer comorbidities (3.5% vs. 53.2%, P<0.001), and less chance of turning re-positive on nucleic acid tests (12.3% vs. 22.5%, P=0.019). For adult patients, compared with no prior vaccination, receiving 3 doses of inactivated vaccine was associated with significantly lower risk of severe disease (OR 0.227 [0.065-0.787], P=0.020), less ICU admission (OR 0.023 [0.002-0.214], P=0.001), lower re-positive rate on PCR (OR 0.240 [0.098-0.587], P=0.002), and shorter duration of hospitalization and recovery (OR 0.233 [0.091-0.596], P=0.002). At the beginning of the convalescence phase, patients who had received 3 doses of inactivated vaccine had substantially lower systemic immune-inflammation index (SII) and C-reactive protein than unvaccinated patients, while CD4+/CD8+ ratio, activated Treg cells and Th1/Th2 ratio were higher compared to their 2-dose counterparts, suggesting that receipt of 3 doses of inactivated vaccine could step up inflammation resolution after infection. Plasma neutralization titers against Omicron, Beta, and wildtype significantly increased after breakthrough infection with Omicron. Moderate symptoms were associated with higher plasma neutralization titers than mild symptoms. However, vaccination profiles prior to infection, whether 2 doses versus 3 doses or types of vaccines, had no significant effect on post-infection neutralization titer. Among recipients of 3 doses of CoronaVac, infection with Omicron BA.1 largely increased neutralization titers against Omicron BA.1 (8.7x), Beta (4.5x), and wildtype (2.2x), compared with uninfected healthy individuals who have a matched vaccination profile. InterpretationReceipt of 3-dose inactivated vaccines can substantially reduce the disease severity of Omicron BA.1 infection, with most vaccinated patients presenting with mild to moderate illness. Child patients present with less severe disease than adult patients after infection. Omicron BA.1 convalescents who had received inactivated vaccines showed significantly increased plasma neutralizing antibody titers against Omicron BA.1, Beta, and wildtype SARS-CoV-2 compared with vaccinated healthy individuals. FundingThis research is supported by Changping Laboratory (CPL-1233) and the Emergency Key Program of Guangzhou Laboratory (EKPG21-30-3), sponsored by the Ministry of Science and Technology of the Peoples Republic of China. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSPrevious studies (many of which have not been peer-reviewed) have reported inconsistent findings regarding the effect of inactivated vaccines against the Omicron variant. On Mar 6, 2022, we searched PubMed with the query "(SARS-CoV-2) AND ((Neutralisation) OR (Neutralisation)) AND ((Omicron) OR (BA.1)) AND (inactivated vaccine)", without date or language restrictions. This search identified 18 articles, of which 13 were directly relevant. Notably, the participants in many of these studies have received only one or two doses of inactivated vaccine with heterologous booster vaccination; other studies have a limited number of participants receiving inactivated vaccines. Added value of this studyTo date, this is the first study to report on the protective effect of inactivated vaccines against the severe disease caused by the Omicron variant. We examine and compare the disease profile of adults and children. Furthermore, we estimate the effect of post-vaccination omicron infection on plasma neutralization titers against Omicron and other SARS-COV-2 variants. Specifically, the disease profile of Omicron convalescents who had received two-dose primary series of inactivated vaccines with or without a booster dose prior to infection is compared with unvaccinated patients. We also analyzed the effect of infection on neutralizing activity by comparing vaccinated convalescents with vaccinated healthy individuals with matched vaccination profiles. Implications of all the available evidenceCompared with adults, child patients infected with Omicron tend to present with less severe disease and are less likely to turn re-positive on nucleic acid tests. Receipt of two-dose primary series or three doses of inactivated vaccine is a protective factor against severe disease, ICU admission, re-positive PCR and longer hospitalization. The protection afforded by a booster dose is stronger than two-dose primary series alone. Besides vaccination, infection with Omicron is also a key factor for elevated neutralizing antibody titers, enabling cross-neutralization against Omicron, wildtype (WT) and the Beta variant.

8.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-479349

RESUMEN

Omicron sub-lineage BA.2 has rapidly surged globally, accounting for over 60% of recent SARS-CoV-2 infections. Newly acquired RBD mutations and high transmission advantage over BA.1 urge the investigation of BA.2s immune evasion capability. Here, we show that BA.2 causes strong neutralization resistance, comparable to BA.1, in vaccinated individuals plasma. However, BA.2 displays more severe antibody evasion in BA.1 convalescents, and most prominently, in vaccinated SARS convalescents plasma, suggesting a substantial antigenicity difference between BA.2 and BA.1. To specify, we determined the escaping mutation profiles1,2 of 714 SARS-CoV-2 RBD neutralizing antibodies, including 241 broad sarbecovirus neutralizing antibodies isolated from SARS convalescents, and measured their neutralization efficacy against BA.1, BA.1.1, BA.2. Importantly, BA.2 specifically induces large-scale escape of BA.1/BA.1.1-effective broad sarbecovirus neutralizing antibodies via novel mutations T376A, D405N, and R408S. These sites were highly conserved across sarbecoviruses, suggesting that Omicron BA.2 arose from immune pressure selection instead of zoonotic spillover. Moreover, BA.2 reduces the efficacy of S309 (Sotrovimab)3,4 and broad sarbecovirus neutralizing antibodies targeting the similar epitope region, including BD55-5840. Structural comparisons of BD55-5840 in complexes with BA.1 and BA.2 spike suggest that BA.2 could hinder antibody binding through S371F-induced N343-glycan displacement. Intriguingly, the absence of G446S mutation in BA.2 enabled a proportion of 440-449 linear epitope targeting antibodies to retain neutralizing efficacy, including COV2-2130 (Cilgavimab)5. Together, we showed that BA.2 exhibits distinct antigenicity compared to BA.1 and provided a comprehensive profile of SARS-CoV-2 antibody escaping mutations. Our study offers critical insights into the humoral immune evading mechanism of current and future variants.

9.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-474402

RESUMEN

The SARS-CoV-2 Omicron with increased fitness is spreading rapidly worldwide. Analysis of cryo-EM structures of the Spike (S) from Omicron reveals amino acid substitutions forging new interactions that stably maintain an "active" conformation for receptor recognition. The relatively more compact domain organization confers improved stability and enhances attachment but compromises the efficiency of viral fusion step. Alterations in local conformation, charge and hydrophobic microenvironments underpin the modulation of the epitopes such that they are not recognized by most NTD- and RBD-antibodies, facilitating viral immune escape. Apart from already existing mutations, we have identified three new immune escape sites: 1) Q493R, 2) G446S and 3) S371L/S373P/S375F that confers greater resistance to five of the six classes of RBD-antibodies. Structure of the Omicron S bound with human ACE2, together with analysis of sequence conservation in ACE2 binding region of 25 sarbecovirus members as well as heatmaps of the immunogenic sites and their corresponding mutational frequencies sheds light on conserved and structurally restrained regions that can be used for the development of broad-spectrum vaccines and therapeutics.

10.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-470392

RESUMEN

The SARS-CoV-2 B.1.1.529 variant (Omicron) contains 15 mutations on the receptor-binding domain (RBD). How Omicron would evade RBD neutralizing antibodies (NAbs) requires immediate investigation. Here, we used high-throughput yeast display screening1,2 to determine the RBD escaping mutation profiles for 247 human anti-RBD NAbs and showed that the NAbs could be unsupervised clustered into six epitope groups (A-F), which is highly concordant with knowledge-based structural classifications3-5. Strikingly, various single mutations of Omicron could impair NAbs of different epitope groups. Specifically, NAbs in Group A-D, whose epitope overlap with ACE2-binding motif, are largely escaped by K417N, G446S, E484A, and Q493R. Group E (S309 site)6 and F (CR3022 site)7 NAbs, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but still, a subset of NAbs are escaped by G339D, N440K, and S371L. Furthermore, Omicron pseudovirus neutralization showed that single mutation tolerating NAbs could also be escaped due to multiple synergetic mutations on their epitopes. In total, over 85% of the tested NAbs are escaped by Omicron. Regarding NAb drugs, the neutralization potency of LY-CoV016/LY-CoV555, REGN10933/REGN10987, AZD1061/AZD8895, and BRII-196 were greatly reduced by Omicron, while VIR-7831 and DXP-604 still function at reduced efficacy. Together, data suggest Omicron would cause significant humoral immune evasion, while NAbs targeting the sarbecovirus conserved region remain most effective. Our results offer instructions for developing NAb drugs and vaccines against Omicron and future variants.

11.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21261735

RESUMEN

Emergence of variants of concern (VOC) with altered antigenic structures and waning humoral immunity to SARS-CoV-2 are harbingers of a long pandemic. Administration of a third dose of an inactivated virus vaccine can boost the immune response. Here, we have dissected the immunogenic profiles of antibodies from 3-dose vaccinees, 2-dose vaccinees and convalescents. Better neutralization breadth to VOCs, expeditious recall and long-lasting humoral response bolster 3-dose vaccinees in warding off COVID-19. Analysis of 171 complex structures of SARS-CoV-2 neutralizing antibodies identified structure-activity correlates, revealing ultrapotent, VOCs-resistant and broad-spectrum antigenic patches. Construction of immunogenic and mutational heat maps revealed a direct relationship between "hot" immunogenic sites and areas with high mutation frequencies. Ongoing antibody somatic mutation, memory B cell clonal turnover and antibody composition changes in B cell repertoire driven by prolonged and repeated antigen stimulation confer development of monoclonal antibodies with enhanced neutralizing potency and breadth. Our findings rationalize the use of 3-dose immunization regimens for inactivated vaccines. One sentence summaryA third booster dose of inactivated vaccine produces a highly sifted humoral immune response via a sustained evolution of antibodies capable of effectively neutralizing SARS-CoV-2 variants of concern.

12.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-454402

RESUMEN

The spread of the SARS-CoV-2 variants could seriously dampen the global effort to tackle the COVID-19 pandemic. Recently, we investigated the humoral antibody responses of SARS-CoV-2 convalescent patients and vaccinees towards circulating variants, and identified a panel of monoclonal antibodies (mAbs) that could efficiently neutralize the B.1.351 (Beta) variant. Here we investigate how these mAbs target the B.1.351 spike protein using cryo-electron microscopy. In particular, we show that two superpotent mAbs, BD-812 and BD-836, have non-overlapping epitopes on the receptor-binding domain (RBD) of spike. Both block the interaction between RBD and the ACE2 receptor; and importantly, both remain fully efficacious towards the B.1.617.1 (Kappa) and B.1.617.2 (Delta) variants. The BD-812/BD-836 pair could thus serve as an ideal antibody cocktail against the SARS-CoV-2 VOCs.

13.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-435594

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its emerging variants of concern (VOC), such as Delta (B.1.617.2) and Omicron (B.1.1.529), has continued to drive the worldwide pandemic. Therefore, there is a high demand for vaccines with enhanced efficacy, high thermostability, superior design flexibility, and fast manufacturing speed. Here, we report a circular RNA (circRNA) vaccine that encodes the trimeric RBD of SARS-CoV-2 Spike protein. Without the need of nucleotide modification, 5-capping or 3-polyadenylation, circRNA could be rapidly produced via in vitro transcription and is highly thermostable whether stored in naked or lipid-nanoparticle (LNP)-encapsulated format. LNP-encapsulated circRNARBD elicited potent neutralizing antibodies and T cell responses, providing robust protection against Beta (B.1.351) and native viruses in mice and rhesus macaques, respectively. Notably, circRNA vaccine enabled higher and more durable antigen production than 1m{Psi}-modified mRNA vaccine, eliciting a higher proportion of neutralizing antibodies and stronger Th1-biased immune responses. Importantly, we found that circRNARBD-Omicron vaccine induced effective neutralizing antibodies against only Omicron but not Delta variant. By contrast, circRNARBD-Delta could elicit high level of neutralizing antibodies against both Delta and Omicron. Following two doses of either native- or Delta-specific vaccination, circRNARBD-Delta, but not Omicron or Beta vaccines, could effectively boost the neutralizing antibodies against both Delta and Omicron variants. These results suggest that circRNARBD-Delta is a favorable choice for vaccination to provide a broad-spectrum protection against the current variants of concern of SARS-CoV-2.

14.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-195263

RESUMEN

Understanding the mechanism of neutralizing antibodies (NAbs) against SARS-CoV-2 is critical for effective vaccines and therapeutics development. We recently reported an exceptionally potent NAb, BD-368-2, and revealed the existence of VH3-53/VH3-66 convergent NAbs in COVID-19. Here we report the 3.5-[A] cryo-EM structure of BD-368-2s Fabs in complex with a mutation-induced prefusion-state-stabilized spike trimer. Unlike VH3-53/VH3-66 NAbs, BD-368-2 fully blocks ACE2 binding by occupying all three receptor-binding domains (RBDs) simultaneously, regardless of their "up" and "down" positions. BD-368-2 also triggers fusogenic-like structural rearrangements of the spike trimer, which could impede viral entry. Moreover, BD-368-2 completely avoids the common epitope of VH3-53/VH3-66 NAbs, evidenced by multiple crystal structures of their Fabs in tripartite complexes with RBD, suggesting a new way of pairing potent NAbs to prevent neutralization escape. Together, these results rationalize a unique epitope that leads to exceptional neutralization potency, and provide guidance for NAb therapeutics and vaccine designs against SARS-CoV-2.

15.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-060947

RESUMEN

The novel coronavirus disease 2019 (COVID-19) pandemic poses a serious public health risk. Analyzing the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from clinical samples is crucial for the understanding of viral spread and viral evolution, as well as for vaccine development. Existing sample preparation methods for viral genome sequencing are demanding on user technique and time, and thus not ideal for time-sensitive clinical samples; these methods are also not optimized for high performance on viral genomes. We have developed MetagenomIc RNA EnRichment VirAl sequencing (MINERVA), a facile, practical, and robust approach for metagenomic and deep viral sequencing from clinical samples. This approach uses direct tagmentation of RNA/DNA hybrids using Tn5 transposase to greatly simplify the sequencing library construction process, while subsequent targeted enrichment can generate viral genomes with high sensitivity, coverage, and depth. We demonstrate the utility of MINERVA on pharyngeal, sputum and stool samples collected from COVID-19 patients, successfully obtaining both whole metatranscriptomes and complete high-depth high-coverage SARS-CoV-2 genomes from these clinical samples, with high yield and robustness. MINERVA is compatible with clinical nucleic extracts containing carrier RNA. With a shortened hands-on time from sample to virus-enriched sequencing-ready library, this rapid, versatile, and clinic-friendly approach will facilitate monitoring of viral genetic variations during outbreaks, both current and future.

16.
Opt Lett ; 42(3): 523-526, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28146518

RESUMEN

Stimulated Raman scattering (SRS) microscopy is a label-free chemical imaging technique. Two-color imaging is often necessary to determine the distribution of chemical species in SRS microscopy. Current multi-color SRS imaging methods involve complicated instrumentation or longer data acquisition time or are limited to transmission imaging. In this Letter, we show that by adding a simple fiber amplifier to a 2 ps laser source and optical-parametric-oscillator-based SRS setup, one can achieve simultaneous two-color or frequency modulation SRS microscopy. The fiber amplifier can generate a wavelength tunable laser of ±10 nm around the Stokes laser wavelength at 1031 nm with average power greater than 200 mW. In vivo and ex vivo lipid-protein imaging of mouse brain and skin is demonstrated. To further demonstrate the potential of this technique in high-speed in vivo imaging, white blood cells in a blood stream are imaged in a live mouse.

17.
Neurosurg Focus ; 40(3): E9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26926067

RESUMEN

Despite advances in the surgical management of brain tumors, achieving optimal surgical results and identification of tumor remains a challenge. Raman spectroscopy, a laser-based technique that can be used to nondestructively differentiate molecules based on the inelastic scattering of light, is being applied toward improving the accuracy of brain tumor surgery. Here, the authors systematically review the application of Raman spectroscopy for guidance during brain tumor surgery. Raman spectroscopy can differentiate normal brain from necrotic and vital glioma tissue in human specimens based on chemical differences, and has recently been shown to differentiate tumor-infiltrated tissues from noninfiltrated tissues during surgery. Raman spectroscopy also forms the basis for coherent Raman scattering (CRS) microscopy, a technique that amplifies spontaneous Raman signals by 10,000-fold, enabling real-time histological imaging without the need for tissue processing, sectioning, or staining. The authors review the relevant basic and translational studies on CRS microscopy as a means of providing real-time intraoperative guidance. Recent studies have demonstrated how CRS can be used to differentiate tumor-infiltrated tissues from noninfiltrated tissues and that it has excellent agreement with traditional histology. Under simulated operative conditions, CRS has been shown to identify tumor margins that would be undetectable using standard bright-field microscopy. In addition, CRS microscopy has been shown to detect tumor in human surgical specimens with near-perfect agreement to standard H & E microscopy. The authors suggest that as the intraoperative application and instrumentation for Raman spectroscopy and imaging matures, it will become an essential component in the neurosurgical armamentarium for identifying residual tumor and improving the surgical management of brain tumors.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Procedimientos Neuroquirúrgicos/normas , Espectrometría Raman/normas , Humanos , Procedimientos Neuroquirúrgicos/métodos , Espectrometría Raman/métodos
19.
Opt Lett ; 37(10): 1652-4, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22627526

RESUMEN

We present a fiber-format picosecond light source for coherent anti-Stokes Raman scattering microscopy. Pulses from a Yb-doped fiber amplifier are frequency converted by four-wave mixing (FWM) in normal-dispersion photonic crystal fiber to produce a synchronized two-color picosecond pulse train. We show that seeding the FWM process overcomes the deleterious effects of group-velocity mismatch and allows efficient conversion into narrow frequency bands. The source generates more than 160 mW of nearly transform-limited pulses tunable from 775 to 815 nm. High-quality coherent Raman images of animal tissues and cells acquired with this source are presented.


Asunto(s)
Microscopía/instrumentación , Fibras Ópticas , Espectrometría Raman/instrumentación , Animales , Encéfalo/citología , Células Epidérmicas , Fibroblastos/citología , Ratones , Ratas , Glándulas Sebáceas/citología
20.
Opt Lett ; 31(9): 1292-4, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16642089

RESUMEN

The signal and idler beams from a picosecond, synchronously pumped optical parametric oscillator (OPO) provide the two colors necessary for coherent anti-Stokes Raman scattering (CARS) microscopy. The OPO provides a continuously tunable frequency difference between the two beams over a broad range of Raman shifts (100-3700 cm(-1)) by varying the temperature of a single nonlinear crystal. The near-infrared output (900-1300 nm) allows for deep penetration into thick samples and reduced nonlinear photodamage. Applications of this light source to in vivo cell and ex vivo tissue imaging are demonstrated.


Asunto(s)
Aumento de la Imagen/instrumentación , Rayos Láser , Iluminación/instrumentación , Espectrometría Raman/instrumentación , Tomografía de Coherencia Óptica/instrumentación , Animales , Oído Externo/citología , Diseño de Equipo , Análisis de Falla de Equipo , Aumento de la Imagen/métodos , Ratones , Dispersión de Radiación , Espectrometría Raman/métodos , Tomografía de Coherencia Óptica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...