Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
medRxiv ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39281759

RESUMEN

The major spliceosome comprises the five snRNAs U1, U2, U4, U5 and U6. We recently showed that mutations in RNU4- 2, which encodes U4 snRNA, cause one of the most prevalent monogenic neurodevelopmental disorders. Here, we report that recurrent germline mutations in RNU2-2P , a 191bp gene encoding U2 snRNA, are responsible for a related disorder. By genetic association, we implicated recurrent de novo single nucleotide mutations at nucleotide positions 4 and 35 of RNU2-2P among nine cases. We replicated this finding in six additional cases, bringing the total to 15. The disorder is characterized by intellectual disability, neurodevelopmental delay, autistic behavior, microcephaly, hypotonia, epilepsy and hyperventilation. All cases display a severe and complex seizure phenotype. Our findings cement the role of major spliceosomal snRNAs in the etiologies of neurodevelopmental disorders.

2.
Genet Med ; : 101251, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39275948

RESUMEN

PURPOSE: This study aims to comprehensively delineate the phenotypic spectrum of ACTL6B-related disorders, previously associated with both autosomal recessive and autosomal dominant neurodevelopmental disorders. Molecularly, the role of the nucleolar protein ACTL6B in contributing to the disease has remained unclear. METHODS: We identified 105 affected individuals, including 39 previously reported cases, and systematically analysed detailed clinical and genetic data for all individuals. Additionally, we conducted knockdown experiments in neuronal cells to investigate the role of ACTL6B in ribosome biogenesis. RESULTS: Biallelic variants in ACTL6B are associated with severe-to-profound global developmental delay/intellectual disability (GDD/ID), infantile intractable seizures, absent speech, autistic features, dystonia, and increased lethality. De novo monoallelic variants result in moderate-to-severe GDD/ID, absent speech, and autistic features, while seizures and dystonia were less frequently observed. Dysmorphic facial features and brain abnormalities, including hypoplastic corpus callosum, parenchymal volume loss/atrophy, are common findings in both groups. We reveal that in the nucleolus, ACTL6B plays a crucial role in ribosome biogenesis, in particular in pre-rRNA processing. CONCLUSION: This study provides a comprehensive characterization of the clinical spectrum of both autosomal recessive and dominant forms of ACTL6B-associated disorders. It offers a comparative analysis of their respective phenotypes provides a plausible molecular explanation and suggests their inclusion within the expanding category of 'ribosomopathies'.

3.
Cancer Med ; 13(14): e70049, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39056567

RESUMEN

BACKGROUND/OBJECTIVES: Ataxia telangiectasia (A-T) is an inherited multisystem disorder with increased sensitivity to ionising radiation and elevated cancer risk. Although other cancer predisposition syndromes have established cancer screening protocols, evidence-based guidelines for cancer screening in A-T are lacking. This study sought to assess feasibility of a cancer screening protocol based on whole-body MRI (WB-MRI) in children and young people with A-T. DESIGN/METHODS: Children and young people with A-T were invited to undergo a one-off non-sedated 3-Tesla WB-MRI. Completion rate of WB-MRI was recorded and diagnostic image quality assessed by two experienced radiologists, with pre-specified success thresholds for scan completion of >50% participants and image quality between acceptable to excellent in 65% participants. Positive imaging findings were classified according to the ONCO-RADS system. Post-participation interviews were performed with recruited families to assess the experience of participating and feelings about waiting for, and communication of, the findings of the scan. RESULTS: Forty-six children and young people with A-T were identified, of which 36 were eligible to participate, 18 were recruited and 16 underwent WB-MRI. Nineteen parents participated in interviews. Fifteen participants (83%) completed the full WB-MRI scan protocol. The pre-specified image quality criterion was achieved with diagnostic images obtained in at least 93% of each MRI sequence. Non-malignant scan findings were present in 4 (25%) participants. Six themes were identified from the interviews: (1) anxiety is a familiar feeling, (2) the process of MRI scanning is challenging for some children and families, (3) preparation is essential to reduce stress, (4) WB-MRI provides the reassurance about the physical health that families need, (5) WB-MRI experience turned out to be a positive experience and (6) WB-MRI allows families to be proactive. CONCLUSION: This study shows that WB-MRI for cancer screening is feasible and well-accepted by children and young people with A-T and their families.


Asunto(s)
Ataxia Telangiectasia , Detección Precoz del Cáncer , Estudios de Factibilidad , Imagen por Resonancia Magnética , Imagen de Cuerpo Entero , Humanos , Ataxia Telangiectasia/diagnóstico por imagen , Niño , Femenino , Masculino , Adolescente , Imagen por Resonancia Magnética/métodos , Estudios Transversales , Detección Precoz del Cáncer/métodos , Detección Precoz del Cáncer/psicología , Imagen de Cuerpo Entero/métodos , Adulto Joven , Preescolar , Neoplasias/diagnóstico por imagen , Neoplasias/psicología , Adulto
4.
Am J Med Genet A ; : e63779, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853608

RESUMEN

Pathogenic variants in FLNA cause a diversity of X-linked developmental disorders associated with either preserved or diminished levels of filamin A protein and are conceptualized dichotomously as relating to underlying gain- or loss-of-function pathogenic mechanisms. Hemizygosity for germline deletions or truncating variants in FLNA is generally considered to result in embryonic lethality. Structurally, filamin A is composed of an N-terminal actin-binding region, followed by 24 immunoglobulin-like repeat units. The repeat domains are separated into distinct segments by two regions of low-complexity known as hinge-1 and hinge-2. Hinge-1 is proposed to confer flexibility to the otherwise rigid protein and is a target for cleavage by calpain with the resultant filamin fragments mediating crucial cellular signaling processes. Here, three families with pathogenic variants in FLNA that impair the function of hinge-1 in males are described, leading to distinct clinical phenotypes. One large in-frame deletion that includes the hinge leads to frontometaphyseal dysplasia in affected males and females, while two germline truncating variants located within the exon encoding hinge 1 result in phenotypes in males that are explained by exon skipping and under-expression of a transcript that deletes hinge-1 from the resultant protein. These three variants affecting hinge-1 indicate that this domain does not mediate cellular functions that, when deficientresult in embryonic lethality in males and that germline truncating variants in this region of FLNA can result in viable phenotypes in males.

5.
medRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746364

RESUMEN

Retinoblastoma (RB) proteins are highly conserved transcriptional regulators that play important roles during development by regulating cell-cycle gene expression. RBL2 dysfunction has been linked to a severe neurodevelopmental disorder. However, to date, clinical features have only been described in six individuals carrying five biallelic predicted loss of function (pLOF) variants. To define the phenotypic effects of RBL2 mutations in detail, we identified and clinically characterized a cohort of 28 patients from 18 families carrying LOF variants in RBL2 , including fourteen new variants that substantially broaden the molecular spectrum. The clinical presentation of affected individuals is characterized by a range of neurological and developmental abnormalities. Global developmental delay and intellectual disability were uniformly observed, ranging from moderate to profound and involving lack of acquisition of key motor and speech milestones in most patients. Frequent features included postnatal microcephaly, infantile hypotonia, aggressive behaviour, stereotypic movements and non-specific dysmorphic features. Common neuroimaging features were cerebral atrophy, white matter volume loss, corpus callosum hypoplasia and cerebellar atrophy. In parallel, we used the fruit fly, Drosophila melanogaster , to investigate how disruption of the conserved RBL2 orthologueue Rbf impacts nervous system function and development. We found that Drosophila Rbf LOF mutants recapitulate several features of patients harboring RBL2 variants, including alterations in the head and brain morphology reminiscent of microcephaly, and perturbed locomotor behaviour. Surprisingly, in addition to its known role in controlling tissue growth during development, we find that continued Rbf expression is also required in fully differentiated post-mitotic neurons for normal locomotion in Drosophila , and that adult-stage neuronal re-expression of Rbf is sufficient to rescue Rbf mutant locomotor defects. Taken together, this study provides a clinical and experimental basis to understand genotype-phenotype correlations in an RBL2 -linked neurodevelopmental disorder and suggests that restoring RBL2 expression through gene therapy approaches may ameliorate aspects of RBL2 LOF patient symptoms.

6.
Mov Disord ; 39(1): 141-151, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37964426

RESUMEN

BACKGROUND: The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Aniridia , Anhidrasas Carbónicas , Ataxia Cerebelosa , Discapacidad Intelectual , Trastornos del Movimiento , Degeneraciones Espinocerebelosas , Humanos , Ataxia Cerebelosa/genética , Mutación Missense/genética , Trastornos del Movimiento/complicaciones , Atrofia , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
7.
Am J Med Genet A ; 194(4): e63480, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37982325

RESUMEN

Czech dysplasia is an autosomal dominant type 2 collagenopathy that is caused by heterozygosity for the recurrent p.(Arg275Cys) COL2A1 variant. Affected individuals usually present with skeletal abnormalities such as metatarsal hypoplasia of the third and fourth toes and early-onset arthropathy, as well as hearing loss. To date, no ophthalmic findings have been reported in patients with Czech dysplasia even though COL2A1 has been implicated in other ocular conditions such as type 1 Stickler syndrome. For the first time, we report the ocular findings in four families with Czech dysplasia, including type 1 vitreous anomaly, hypoplastic vitreous, retinal tears, and significant refractive error. These novel ocular findings expand the phenotype associated with Czech dysplasia and may aid clinicians as an additional diagnostic feature. Patients with congenital abnormalities of vitreous gel architecture have an increased risk of retinal detachment, and as such, patients may benefit from prophylaxis. Considering that many of the patients did not report any ocular symptoms, vitreous phenotyping is of key importance in identifying the need for counseling with regard to prophylaxis.


Asunto(s)
Artritis , Enfermedades del Tejido Conjuntivo , Pérdida Auditiva Sensorineural , Osteocondrodisplasias , Desprendimiento de Retina , Dedos del Pie/anomalías , Humanos , Enfermedades del Tejido Conjuntivo/genética , Pérdida Auditiva Sensorineural/genética , Desprendimiento de Retina/diagnóstico , Desprendimiento de Retina/genética , Artritis/genética , Mutación , Colágeno Tipo II/genética , Linaje
8.
Genet Med ; 26(3): 101034, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38054405

RESUMEN

PURPOSE: SLC4A10 encodes a plasma membrane-bound transporter, which mediates Na+-dependent HCO3- import, thus mediating net acid extrusion. Slc4a10 knockout mice show collapsed brain ventricles, an increased seizure threshold, mild behavioral abnormalities, impaired vision, and deafness. METHODS: Utilizing exome/genome sequencing in families with undiagnosed neurodevelopmental disorders and international data sharing, 11 patients from 6 independent families with biallelic variants in SLC4A10 were identified. Clinico-radiological and dysmorphology assessments were conducted. A minigene assay, localization studies, intracellular pH recordings, and protein modeling were performed to study the possible functional consequences of the variant alleles. RESULTS: The families harbor 8 segregating ultra-rare biallelic SLC4A10 variants (7 missense and 1 splicing). Phenotypically, patients present with global developmental delay/intellectual disability and central hypotonia, accompanied by variable speech delay, microcephaly, cerebellar ataxia, facial dysmorphism, and infrequently, epilepsy. Neuroimaging features range from some non-specific to distinct neuroradiological findings, including slit ventricles and a peculiar form of bilateral curvilinear nodular heterotopia. In silico analyses showed 6 of 7 missense variants affect evolutionarily conserved residues. Functional analyses supported the pathogenicity of 4 of 7 missense variants. CONCLUSION: We provide evidence that pathogenic biallelic SLC4A10 variants can lead to neurodevelopmental disorders characterized by variable abnormalities of the central nervous system, including altered brain ventricles, thus resembling several features observed in knockout mice.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , Bicarbonatos/metabolismo , Antiportadores de Cloruro-Bicarbonato/metabolismo , Discapacidad Intelectual/genética , Proteínas de Transporte de Membrana , Ratones Noqueados , Trastornos del Neurodesarrollo/genética , Sodio/metabolismo , Bicarbonato de Sodio/metabolismo , Simportadores de Sodio-Bicarbonato/genética
9.
Brain ; 147(5): 1751-1767, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38128568

RESUMEN

BLOC-one-related complex (BORC) is a multiprotein complex composed of eight subunits named BORCS1-8. BORC associates with the cytosolic face of lysosomes, where it sequentially recruits the small GTPase ARL8 and kinesin-1 and -3 microtubule motors to promote anterograde transport of lysosomes toward the peripheral cytoplasm in non-neuronal cells and the distal axon in neurons. The physiological and pathological importance of BORC in humans, however, remains to be determined. Here, we report the identification of compound heterozygous variants [missense c.85T>C (p.Ser29Pro) and frameshift c.71-75dupTGGCC (p.Asn26Trpfs*51)] and homozygous variants [missense c.196A>C (p.Thr66Pro) and c.124T>C (p.Ser42Pro)] in BORCS8 in five children with a severe early-infantile neurodegenerative disorder from three unrelated families. The children exhibit global developmental delay, severe-to-profound intellectual disability, hypotonia, limb spasticity, muscle wasting, dysmorphic facies, optic atrophy, leuko-axonopathy with hypomyelination, and neurodegenerative features with prevalent supratentorial involvement. Cellular studies using a heterologous transfection system show that the BORCS8 missense variants p.Ser29Pro, p.Ser42Pro and p.Thr66Pro are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution toward the cell periphery. The BORCS8 frameshift variant p.Asn26Trpfs*51, on the other hand, is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution toward the cell periphery. Therefore, all the BORCS8 variants are partial or total loss-of-function alleles and are thus likely pathogenic. Knockout of the orthologous borcs8 in zebrafish causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease. These findings thus identify BORCS8 as a novel genetic locus for an early-infantile neurodegenerative disorder and highlight the critical importance of BORC and lysosome dynamics for the development and function of the central nervous system.


Asunto(s)
Lisosomas , Enfermedades Neurodegenerativas , Humanos , Lisosomas/metabolismo , Lisosomas/genética , Femenino , Masculino , Enfermedades Neurodegenerativas/genética , Animales , Lactante , Preescolar , Niño , Pez Cebra , Linaje , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Alelos , Mutación Missense/genética
10.
Genome Med ; 15(1): 102, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031187

RESUMEN

BACKGROUND: Biallelic variants in OGDHL, encoding part of the α-ketoglutarate dehydrogenase complex, have been associated with highly heterogeneous neurological and neurodevelopmental disorders. However, the validity of this association remains to be confirmed. A second OGDHL patient cohort was recruited to carefully assess the gene-disease relationship. METHODS: Using an unbiased genotype-first approach, we screened large, multiethnic aggregated sequencing datasets worldwide for biallelic OGDHL variants. We used CRISPR/Cas9 to generate zebrafish knockouts of ogdhl, ogdh paralogs, and dhtkd1 to investigate functional relationships and impact during development. Functional complementation with patient variant transcripts was conducted to systematically assess protein functionality as a readout for pathogenicity. RESULTS: A cohort of 14 individuals from 12 unrelated families exhibited highly variable clinical phenotypes, with the majority of them presenting at least one additional variant, potentially accounting for a blended phenotype and complicating phenotypic understanding. We also uncovered extreme clinical heterogeneity and high allele frequencies, occasionally incompatible with a fully penetrant recessive disorder. Human cDNA of previously described and new variants were tested in an ogdhl zebrafish knockout model, adding functional evidence for variant reclassification. We disclosed evidence of hypomorphic alleles as well as a loss-of-function variant without deleterious effects in zebrafish variant testing also showing discordant familial segregation, challenging the relationship of OGDHL as a conventional Mendelian gene. Going further, we uncovered evidence for a complex compensatory relationship among OGDH, OGDHL, and DHTKD1 isoenzymes that are associated with neurodevelopmental disorders and exhibit complex transcriptional compensation patterns with partial functional redundancy. CONCLUSIONS: Based on the results of genetic, clinical, and functional studies, we formed three hypotheses in which to frame observations: biallelic OGDHL variants lead to a highly variable monogenic disorder, variants in OGDHL are following a complex pattern of inheritance, or they may not be causative at all. Our study further highlights the continuing challenges of assessing the validity of reported disease-gene associations and effects of variants identified in these genes. This is particularly more complicated in making genetic diagnoses based on identification of variants in genes presenting a highly heterogenous phenotype such as "OGDHL-related disorders".


Asunto(s)
Proteínas , Pez Cebra , Animales , Humanos , Frecuencia de los Genes , Complejo Cetoglutarato Deshidrogenasa/genética , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Fenotipo , Proteínas/genética , Pez Cebra/genética
11.
Cancer Med ; 12(13): 14663-14673, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37264737

RESUMEN

BACKGROUND/OBJECTIVES: Ataxia telangiectasia (A-T) is a multiorgan disorder with increased vulnerability to cancer. Despite this increased cancer risk, there are no widely accepted guidelines for cancer surveillance in people affected by A-T. We aimed to understand the current international practice regarding cancer surveillance in A-T and agreed-upon approaches to develop cancer surveillance in A-T. DESIGN/METHODS: We used a consensus development method, the e-Delphi technique, comprising three rounds. Round 1 consisted of a Delphi questionnaire and a survey that collected the details of respondents' professional background, experience, and current practice of cancer surveillance in A-T. Rounds 2 and 3 were designed based on previous rounds and modified according to the comments made by the panellists. The pre-specified consensus threshold was ≥75% agreement. RESULTS: Thirty-five expert panellists from 13 countries completed the study. The survey indicated that the current practice of cancer surveillance varies widely between experts and centres'. Consensus was reached that evidence-based guidelines are needed for cancer surveillance in people with A-T, with separate recommendations for adults and children. Statements relating to the tests that should be included, the age for starting and stopping cancer surveillance and the optimal surveillance interval were also agreed upon, although in some areas, the consensus was that further research is needed. CONCLUSION: The international expert consensus statement confirms the need for evidence-based cancer surveillance guidelines in A-T, highlights key features that the guidelines should include, and identifies areas of uncertainty in the expert community. This elucidates current knowledge gaps and will inform the design of future clinical trials.


Asunto(s)
Ataxia Telangiectasia , Neoplasias , Adulto , Niño , Humanos , Ataxia Telangiectasia/complicaciones , Ataxia Telangiectasia/diagnóstico , Consenso , Técnica Delphi , Encuestas y Cuestionarios
12.
Health Expect ; 26(3): 1358-1367, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36929011

RESUMEN

BACKGROUND/OBJECTIVES: Ataxia-telangiectasia (A-T) is a complex inherited disease associated with an increased risk of malignancy. Surveillance guidelines have demonstrated significant health benefits in other cancer predisposition syndromes. However, evidence-based guidelines for cancer screening are not currently used in the United Kingdom for people affected by A-T. This study aims to understand how people with A-T and their parents feel about cancer surveillance using whole-body magnetic resonance imaging (MRI) to inform the future development of cancer surveillance guidelines. DESIGN/METHODS: We conducted semistructured interviews with people affected by A-T. Data were analysed inductively using thematic analysis. RESULTS: Nine parents of children with A-T and four adults with A-T were interviewed. Five main themes emerged from the data, including (1) cancer screening was considered invaluable with the perceived value of early detection highlighted; (2) the cancer fear can increase anxiety; (3) the perceived limitations around current practice, with the responsibility for monitoring falling too strongly on parents and patients; (4) the need for effective preparation for cancer screening, including clear communication and (5) the challenges associated with MRI screening, where specific recommendations were made for improving the child's experience. CONCLUSION: This study suggests that stakeholders are positive about the perceived advantages of a cancer screening programme. Ongoing support and preparation techniques should be adopted to maximise adherence and minimise adverse psychosocial outcomes. PATIENT OR PUBLIC CONTRIBUTION: People with A-T and parents of people with A-T were actively involved in this study by giving their consent to be interviewed. An independent parent representative contributed to the study, supporting the research team in interpreting and commenting on the appropriateness of the language used in this report.


Asunto(s)
Ataxia Telangiectasia , Neoplasias , Niño , Adulto , Humanos , Imagen por Resonancia Magnética , Imagen de Cuerpo Entero , Padres/psicología , Neoplasias/diagnóstico por imagen
13.
Nat Commun ; 14(1): 853, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792598

RESUMEN

Following the diagnosis of a paediatric disorder caused by an apparently de novo mutation, a recurrence risk of 1-2% is frequently quoted due to the possibility of parental germline mosaicism; but for any specific couple, this figure is usually incorrect. We present a systematic approach to providing individualized recurrence risk. By combining locus-specific sequencing of multiple tissues to detect occult mosaicism with long-read sequencing to determine the parent-of-origin of the mutation, we show that we can stratify the majority of couples into one of seven discrete categories associated with substantially different risks to future offspring. Among 58 families with a single affected offspring (representing 59 de novo mutations in 49 genes), the recurrence risk for 35 (59%) was decreased below 0.1%, but increased owing to parental mixed mosaicism for 5 (9%)-that could be quantified in semen for paternal cases (recurrence risks of 5.6-12.1%). Implementation of this strategy offers the prospect of driving a major transformation in the practice of genetic counselling.


Asunto(s)
Padre , Parto , Masculino , Embarazo , Femenino , Humanos , Niño , Mutación , Medición de Riesgo , Células Germinativas , Mosaicismo , Linaje , Mutación de Línea Germinal
14.
Am J Hum Genet ; 110(3): 499-515, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724785

RESUMEN

Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.


Asunto(s)
Microcefalia , Trastornos del Movimiento , Trastornos del Neurodesarrollo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Células HEK293 , Serina-Treonina Quinasas TOR
15.
Genet Med ; 25(1): 135-142, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36399134

RESUMEN

PURPOSE: Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder. METHODS: We assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature. RESULTS: The main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss. CONCLUSION: This study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities.


Asunto(s)
Braquidactilia , Enanismo , Discapacidad Intelectual , Anomalías Musculoesqueléticas , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Enanismo/genética , Obesidad/genética , Fenotipo , Proteína-Arginina N-Metiltransferasas/genética
16.
Genet Med ; 25(1): 76-89, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36331550

RESUMEN

PURPOSE: Nonerythrocytic αII-spectrin (SPTAN1) variants have been previously associated with intellectual disability and epilepsy. We conducted this study to delineate the phenotypic spectrum of SPTAN1 variants. METHODS: We carried out SPTAN1 gene enrichment analysis in the rare disease component of the 100,000 Genomes Project and screened 100,000 Genomes Project, DECIPHER database, and GeneMatcher to identify individuals with SPTAN1 variants. Functional studies were performed on fibroblasts from 2 patients. RESULTS: Statistically significant enrichment of rare (minor allele frequency < 1 × 10-5) probably damaging SPTAN1 variants was identified in families with hereditary ataxia (HA) or hereditary spastic paraplegia (HSP) (12/1142 cases vs 52/23,847 controls, p = 2.8 × 10-5). We identified 31 individuals carrying SPTAN1 heterozygous variants or deletions. A total of 10 patients presented with pure or complex HSP/HA. The remaining 21 patients had developmental delay and seizures. Irregular αII-spectrin aggregation was noted in fibroblasts derived from 2 patients with p.(Arg19Trp) and p.(Glu2207del) variants. CONCLUSION: We found that SPTAN1 is a genetic cause of neurodevelopmental disorder, which we classified into 3 distinct subgroups. The first comprises developmental epileptic encephalopathy. The second group exhibits milder phenotypes of developmental delay with or without seizures. The final group accounts for patients with pure or complex HSP/HA.


Asunto(s)
Epilepsia , Paraplejía Espástica Hereditaria , Humanos , Espectrina/genética , Mutación , Epilepsia/genética , Fenotipo , Ataxia , Paraplejía Espástica Hereditaria/genética , Convulsiones , Paraplejía , Linaje
17.
J Med Genet ; 60(8): 791-796, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36581449

RESUMEN

BACKGROUND: MAPK-activated protein kinase 5 (MAPKAPK5) is an essential enzyme for diverse cellular processes. Dysregulation of the pathways regulated by MAPKAPK enzymes can lead to the development of variable diseases. Recently, homozygous loss-of-function variants in MAPKAPK5 were reported in four patients from three families presenting with a recognisable neurodevelopmental disorder, so-called 'neurocardiofaciodigital' syndrome. OBJECTIVE AND METHODS: In order to improve characterisation of the clinical features associated with biallelic MAPKAPK5 variants, we employed a genotype-first approach combined with reverse deep-phenotyping of three affected individuals. RESULTS: In the present study, we identified biallelic loss-of-function and missense MAPKAPK5 variants in three unrelated individuals from consanguineous families. All affected individuals exhibited a syndromic neurodevelopmental disorder characterised by severe global developmental delay, intellectual disability, characteristic facial morphology, brachycephaly, digital anomalies, hair and nail defects and neuroradiological findings, including cerebellar hypoplasia and hypomyelination, as well as variable vision and hearing impairment. Additional features include failure to thrive, hypotonia, microcephaly and genitourinary anomalies without any reported congenital heart disease. CONCLUSION: In this study, we consolidate the causality of loss of MAPKAPK5 function and further delineate the molecular and phenotypic spectrum associated with this new ultra-rare neurodevelopmental syndrome.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Niño , Humanos , Fenotipo , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Discapacidades del Desarrollo/genética
18.
JAMA Dermatol ; 158(11): 1245-1253, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36044230

RESUMEN

Importance: Uncombable hair syndrome (UHS) is a rare hair shaft anomaly that manifests during infancy and is characterized by dry, frizzy, and wiry hair that cannot be combed flat. Only about 100 known cases have been reported so far. Objective: To elucidate the genetic spectrum of UHS. Design, Setting, and Participants: This cohort study includes 107 unrelated index patients with a suspected diagnosis of UHS and family members who were recruited worldwide from January 2013 to December 2021. Participants of all ages, races, and ethnicities were recruited at referral centers or were enrolled on their own initiative following personal contact with the authors. Genetic analyses were conducted in Germany from January 2014 to December 2021. Main Outcomes and Measures: Clinical photographs, Sanger or whole-exome sequencing and array-based genotyping of DNA extracted from blood or saliva samples, and 3-dimensional protein modeling. Descriptive statistics, such as frequency counts, were used to describe the distribution of identified pathogenic variants and genotypes. Results: The genetic characteristics of patients with UHS were established in 80 of 107 (74.8%) index patients (82 [76.6%] female) who carried biallelic pathogenic variants in PADI3, TGM3, or TCHH (ie, genes that encode functionally related hair shaft proteins). Molecular genetic findings from 11 of these 80 individuals were previously published. In 76 (71.0%) individuals, the UHS phenotype were associated with pathogenic variants in PADI3. The 2 most commonly observed PADI3 variants account for 73 (48.0%) and 57 (37.5%) of the 152 variant PADI3 alleles in total, respectively. Two individuals carried pathogenic variants in TGM3, and 2 others carried pathogenic variants in TCHH. Haplotype analyses suggested a founder effect for the 4 most commonly observed pathogenic variants in the PADI3 gene. Conclusions and Relevance: This cohort study extends and gives an overview of the genetic variant spectrum of UHS based on molecular genetic analyses of the largest worldwide collective of affected individuals, to our knowledge. Formerly, a diagnosis of UHS could only be made by physical examination of the patient and confirmed by microscopical examination of the hair shaft. The discovery of pathogenic variants in PADI3, TCHH, and TGM3 may open a new avenue for clinicians and affected individuals by introducing molecular diagnostics for UHS.


Asunto(s)
Enfermedades del Cabello , Femenino , Masculino , Humanos , Estudios de Cohortes , Enfermedades del Cabello/diagnóstico , Enfermedades del Cabello/genética , Secuenciación del Exoma , Cabello/anomalías , Transglutaminasas
19.
Eur J Med Genet ; 65(10): 104572, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35918038

RESUMEN

Traboulsi syndrome, otherwise known as facial dysmorphism, lens dislocation, anterior-segment abnormalities and spontaneous filtering blebs, is an autosomal recessive condition associated with characteristic ocular features including dislocated crystalline lenses, anterior segment abnormalities and in some individuals, non-traumatic conjunctival cysts. There is a distinctive facial appearance which includes flattened malar region with convex nasal ridge. Alterations in the aspartate beta-hydroxylase (ASPH) gene are known to be the cause of the condition. We report seven further individuals from six unrelated families with characteristic ocular and facial features. Five individuals had aortic root dilatation, with childhood onset in some, and one undergoing aortic root repair aged 47 years for severe aortic regurgitation and aortic root dilatation. Interestingly, inguinal hernias were commonly reported. Although some skeletal features were seen, these were not consistent. One of the patients had mild deficiency of factor VII on clotting studies. The ASPH protein hydroxylates specific asparagine- and aspartate-residues in epidermal growth factor (EGF)-domain containing proteins including coagulation factors and associated genes including FBN1. We propose this as an explanation for the overlap in clinical features with Marfan syndrome and conclude that Traboulsi syndrome is an important differential diagnosis. We strongly recommend echocardiography surveillance for patients with Traboulsi syndrome.


Asunto(s)
Proteínas de Unión al Calcio , Síndrome de Marfan , Proteínas de la Membrana , Oxigenasas de Función Mixta , Proteínas Musculares , Ácido Aspártico/genética , Proteínas de Unión al Calcio/genética , Niño , Anomalías Craneofaciales , Desplazamiento del Cristalino , Fibrilina-1/genética , Humanos , Iris/anomalías , Síndrome de Marfan/complicaciones , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Proteínas de la Membrana/genética , Oxigenasas de Función Mixta/genética , Proteínas Musculares/genética , Mutación , Factores de Transcripción/genética
20.
Ann Clin Transl Neurol ; 9(7): 1080-1089, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35684946

RESUMEN

The endoplasmic reticulum membrane protein complex subunit 10 (EMC10) is a highly conserved protein responsible for the post-translational insertion of tail-anchored membrane proteins into the endoplasmic reticulum in a defined topology. Two biallelic variants in EMC10 have previously been associated with a neurodevelopmental disorder. Utilizing exome sequencing and international data sharing we have identified 10 affected individuals from six independent families with five new biallelic loss-of-function and one previously reported recurrent EMC10 variants. This report expands the molecular and clinical spectrum of EMC10 deficiency, provides a comprehensive dysmorphological assessment and highlights an overlap between the clinical features of EMC10-and EMC1-related disease.


Asunto(s)
Discapacidad Intelectual , Proteínas de la Membrana , Trastornos del Neurodesarrollo , Humanos , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Trastornos del Neurodesarrollo/genética , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA