Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37049040

RESUMEN

During the design of automotive structures assembled using Self-Piercing Rivets (SPRs), a rivet and die combination is selected for each joint stack. To conduct extensive physical tensile testing on every joint combination to determine the range of strength achieved by each rivet-die combination, a great deal of lab technician time and substrate material are required. It is much simpler and less material-consuming to select the rivet and die solution by examining the cross sections of joints. However, the current methods of measuring cross sections by measuring the amount of mechanical interlock in a linear X-Y direction, achieved with the flared rivet tail, do not give an accurate prediction of joint strength, because they do not measure the full amount of material that must be defeated to pull the rivet tail out of the bottom sheet. The X-Y linear interlock measurement approach also makes it difficult to rapidly rank joint solutions, as it creates two values for each cross section rather than a single value. This study investigates an innovative new measurement method developed by the authors called Volumelock. The approach measures the volume of material that must be defeated to pull out the rivet. Creating a single measurement value for each rivet-die combination makes it much easier to compare different rivet and die solutions; to identify solutions that work well across a number of different stacks; to aid the grouping of stacks on one setter for low-volume line; and to select the strongest solutions for a high-volume line where only one or two different stacks are made by each setter. The joint stack results in this paper indicate that there is a good predictive relationship between the new Volumelock method and peel strength, measured by physical cross-tension testing. In this study, the Volumelock approach predicted the peel strength within a 5% error margin.

2.
Polymers (Basel) ; 13(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652566

RESUMEN

Additive manufacturing (AM) is the process through which components/structures are produced layer-by-layer. In this context, 4D printing combines 3D printing with time so that this combination results in additively manufactured components that respond to external stimuli and, consequently, change their shape/volume or modify their mechanical properties. Therefore, 4D printing uses shape-memory materials that react to external stimuli such as pH, humidity, and temperature. Among the possible materials with shape memory effect (SME), the most suitable for additive manufacturing are shape memory polymers (SMPs). However, due to their weaknesses, shape memory polymer compounds (SMPCs) prove to be an effective alternative. On the other hand, out of all the additive manufacturing techniques, the most widely used is fused filament fabrication (FFF). In this context, the present paper aims to critically review all studies related to the mechanical properties of 4D-FFF materials. The paper provides an update state of the art showing the potential of 4D-FFF printing for different engineering applications, maintaining the focus on the structural integrity of the final structure/component.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...