Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
SLAS Discov ; 27(8): 448-459, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36210051

RESUMEN

BACKGROUND: Stress responses are believed to involve corticotropin releasing factor (CRF), its two cognate receptors (CRF1 and CRF2), and the CRF-binding protein (CRFBP). Whereas decades of research has focused on CRF1, the role of CRF2 in the central nervous system (CNS) has not been thoroughly investigated. We have previously reported that CRF2, interacting with a C terminal fragment of CRFBP, CRFBP(10kD), may have a role in the modulation of neuronal activity. However, the mechanism by which CRF interacts with CRFBP(10kD) and CRF2 has not been fully elucidated due to the lack of useful chemical tools to probe CRFBP. METHODS: We miniaturized a cell-based assay, where CRFBP(10kD) is fused as a chimera with CRF2, and performed a high-throughput screen (HTS) of 350,000 small molecules to find negative allosteric modulators (NAMs) of the CRFBP(10kD)-CRF2 complex. Hits were confirmed by evaluating activity toward parental HEK293 cells, toward CRF2 in the absence of CRFBP(10kD), and toward CRF1 in vitro. Hits were further characterized in ex vivo electrophysiology assays that target: 1) the CRF1+ neurons in the central nucleus of the amygdala (CeA) of CRF1:GFP mice that express GFP under the CRF1 promoter, and 2) the CRF-induced potentiation of N-methyl-D-aspartic acid receptor (NMDAR)-mediated synaptic transmission in dopamine neurons in the ventral tegmental area (VTA). RESULTS: We found that CRFBP(10kD) potentiates CRF-intracellular Ca2+ release specifically via CRF2, indicating that CRFBP may possess excitatory roles in addition to the inhibitory role established by the N-terminal fragment of CRFBP, CRFBP(27kD). We identified novel small molecule CRFBP-CRF2 NAMs that do not alter the CRF1-mediated effects of exogenous CRF but blunt CRF-induced potentiation of NMDAR-mediated synaptic transmission in dopamine neurons in the VTA, an effect mediated by CRF2 and CRFBP. CONCLUSION: These results provide the first evidence of specific roles for CRF2 and CRFBP(10kD) in the modulation of neuronal activity and suggest that CRFBP(10kD)-CRF2 NAMs can be further developed for the treatment of stress-related disorders including alcohol and substance use disorders.


Asunto(s)
Hormona Liberadora de Corticotropina , Proyectos de Investigación , Humanos , Animales , Ratones , Células HEK293
3.
Nat Chem Biol ; 13(5): 486-493, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28244987

RESUMEN

The proteasome is a vital cellular machine that maintains protein homeostasis, which is of particular importance in multiple myeloma and possibly other cancers. Targeting of proteasome 20S peptidase activity with bortezomib and carfilzomib has been widely used to treat myeloma. However, not all patients respond to these compounds, and those who do eventually suffer relapse. Therefore, there is an urgent and unmet need to develop new drugs that target proteostasis through different mechanisms. We identified quinoline-8-thiol (8TQ) as a first-in-class inhibitor of the proteasome 19S subunit Rpn11. A derivative of 8TQ, capzimin, shows >5-fold selectivity for Rpn11 over the related JAMM proteases and >2 logs selectivity over several other metalloenzymes. Capzimin stabilized proteasome substrates, induced an unfolded protein response, and blocked proliferation of cancer cells, including those resistant to bortezomib. Proteomic analysis revealed that capzimin stabilized a subset of polyubiquitinated substrates. Identification of capzimin offers an alternative path to develop proteasome inhibitors for cancer therapy.


Asunto(s)
Inhibidores de Proteasoma/farmacología , Quinolinas/farmacología , Transactivadores/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/química , Quinolinas/química , Relación Estructura-Actividad , Transactivadores/metabolismo
4.
J Biomol Screen ; 19(1): 77-87, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23989452

RESUMEN

Excess caloric consumption leads to triacylglyceride (TAG) accumulation in tissues that do not typically store fat, such as skeletal muscle. This ectopic accumulation alters cells, contributing to the pathogenesis of metabolic syndrome, a major health problem worldwide. We developed a 1536-well assay to measure intracellular TAG accumulation in differentiating H9c2 myoblasts. For this assay, cells were incubated with oleic acid to stimulate TAG accumulation prior to adding compounds. We used Nile red as a fluorescent dye to quantify TAG content with a microplate reader. The cell nuclei were counterstained with DAPI nuclear stain to assess cell count and filter cytotoxic compounds. In parallel, we developed an image-based assay in H9c2 cells to measure lipid accumulation levels via high-content analysis, exploiting the dual-emission spectra characteristic of Nile red staining of neutral and phospholipids. Using both approaches, we successfully screened ~227,000 compounds from the National Institutes of Health library. The screening data from the plate reader and IC50 values correlated with that from the Opera QEHS cell imager. The 1536-well plate reader assay is a powerful high-throughout screening platform to identify potent inhibitors of TAG accumulation to better understand the molecular pathways involved in lipid metabolism that lead to lipotoxicity.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento , Metabolismo de los Lípidos/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Triglicéridos/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Descubrimiento de Drogas/métodos , Humanos , Reproducibilidad de los Resultados
5.
ACS Med Chem Lett ; 4(9): 846-851, 2013 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-24611085

RESUMEN

The neurotensin 1 receptor (NTR1) is an important therapeutic target for a range of disease states including addiction. A high throughput screening campaign, followed by medicinal chemistry optimization, led to the discovery of a non-peptidic ß-arrestin biased agonist for NTR1. The lead compound, 2-cyclopropyl-6,7-dimethoxy-4-(4-(2-methoxyphenyl)- piperazin-1-yl)quinazoline, 32 (ML314), exhibits full agonist behavior against NTR1 (EC50 = 2.0 µM) in the primary assay and selectivity against NTR2. The effect of 32 is blocked by the NTR1 antagonist SR142948A in a dose dependent manner. Unlike peptide based NTR1 agonists, compound 32 has no significant response in a Ca2+ mobilization assay and is thus a biased agonist that activates the ß-arrestin pathway rather than the traditional G q coupled pathway. This bias has distinct biochemical and functional consequences that may lead to physiological advantages. Compound 32 displays good brain penetration in rodents, and studies examining its in vivo properties are underway.

6.
Bioorg Med Chem Lett ; 22(21): 6656-60, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23010269

RESUMEN

The recently discovered apelin/APJ system has emerged as a critical mediator of cardiovascular homeostasis and is associated with the pathogenesis of cardiovascular disease. A role for apelin/APJ in energy metabolism and gastrointestinal function has also recently emerged. We disclose the discovery and characterization of 4-oxo-6-((pyrimidin-2-ylthio)methyl)-4H-pyran-3-yl 4-nitrobenzoate (ML221), a potent APJ functional antagonist in cell-based assays that is >37-fold selective over the closely related angiotensin II type 1 (AT1) receptor. ML221 was derived from an HTS of the ~330,600 compound MLSMR collection. This antagonist showed no significant binding activity against 29 other GPCRs, except to the κ-opioid and benzodiazepinone receptors (<50/<70%I at 10 µM). The synthetic methodology, development of structure-activity relationship (SAR), and initial in vitro pharmacologic characterization are also presented.


Asunto(s)
Descubrimiento de Drogas , Nitrobenzoatos/síntesis química , Piranos/síntesis química , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Animales , Receptores de Apelina , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacología , Relación Dosis-Respuesta a Droga , Hepatocitos/efectos de los fármacos , Concentración 50 Inhibidora , Ratones , Estructura Molecular , Nitrobenzoatos/química , Nitrobenzoatos/farmacología , Unión Proteica/efectos de los fármacos , Piranos/química , Piranos/farmacología , Relación Estructura-Actividad
7.
J Med Chem ; 55(16): 7262-72, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22813531

RESUMEN

A high-throughput screen of the NIH's MLSMR collection of ∼340000 compounds was undertaken to identify compounds that inhibit Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD). PfG6PD is important for proliferating and propagating P. falciparum and differs structurally and mechanistically from the human orthologue. The reaction catalyzed by glucose-6-phosphate dehydrogenase (G6PD) is the first, rate-limiting step in the pentose phosphate pathway (PPP), a key metabolic pathway sustaining anabolic needs in reductive equivalents and synthetic materials in fast-growing cells. In P. falciparum , the bifunctional enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (PfGluPho) catalyzes the first two steps of the PPP. Because P. falciparum and infected host red blood cells rely on accelerated glucose flux, they depend on the G6PD activity of PfGluPho. The lead compound identified from this effort, (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide, 11 (ML276), is a submicromolar inhibitor of PfG6PD (IC(50) = 889 nM). It is completely selective for the enzyme's human isoform, displays micromolar potency (IC(50) = 2.6 µM) against P. falciparum in culture, and has good drug-like properties, including high solubility and moderate microsomal stability. Studies testing the potential advantage of inhibiting PfG6PD in vivo are in progress.


Asunto(s)
Antimaláricos/síntesis química , Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Complejos Multienzimáticos/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Tiazinas/síntesis química , Antimaláricos/química , Antimaláricos/farmacología , Estabilidad de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología , Bibliotecas de Moléculas Pequeñas , Estereoisomerismo , Relación Estructura-Actividad , Tiazinas/química , Tiazinas/farmacología
8.
Mol Cell ; 46(6): 847-58, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22578813

RESUMEN

Translational control of gene expression plays a key role in many biological processes. Consequently, the activity of the translation apparatus is under tight homeostatic control. eIF4E, the mRNA 5' cap-binding protein, facilitates cap-dependent translation and is a major target for translational control. eIF4E activity is controlled by a family of repressor proteins, termed 4E-binding proteins (4E-BPs). Here, we describe the surprising finding that despite the importance of eIF4E for translation, a drastic knockdown of eIF4E caused only minor reduction in translation. This conundrum can be explained by the finding that 4E-BP1 is degraded in eIF4E-knockdown cells. Hypophosphorylated 4E-BP1, which binds to eIF4E, is degraded, whereas hyperphosphorylated 4E-BP1 is refractory to degradation. We identified the KLHL25-CUL3 complex as the E3 ubiquitin ligase, which targets hypophosphorylated 4E-BP1. Thus, the activity of eIF4E is under homeostatic control via the regulation of the levels of its repressor protein 4E-BP1 through ubiquitination.


Asunto(s)
Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Proteínas de Unión a Caperuzas de ARN/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular , Células HEK293 , Células HeLa , Homeostasis , Humanos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión a Caperuzas de ARN/metabolismo , Transfección , Ubiquitina/metabolismo
9.
ACS Med Chem Lett ; 2(10): 780-785, 2011 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-22003428

RESUMEN

NOD1 (nucleotide-binding oligomerization domain 1) protein is a member of the NLR (NACHT and leucine rich repeat domain containing proteins) protein family, which plays a key role in innate immunity as a sensor of specific microbial components derived from bacterial peptidoglycans and induction of inflammatory responses. Mutations in NOD proteins have been associated with various inflammatory diseases that affect NF-κB (nuclear factor κB) activity, a major signaling pathway involved in apoptosis, inflammation, and immune response. A luciferase-based reporter gene assay was utilized in a high-throughput screening program conducted under the NIH-sponsored Molecular Libraries Probe Production Center Network program to identify the active scaffolds. Herein, we report the chemical synthesis, structure-activity relationship studies, downstream counterscreens, secondary assay data, and pharmacological profiling of the 2-aminobenzimidazole lead (compound 1c, ML130) as a potent and selective inhibitor of NOD1-induced NF-κB activation.

10.
J Biomol Screen ; 15(7): 798-805, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20639500

RESUMEN

Hepatic lipid droplets (LDs) are associated with metabolic syndrome, type 2 diabetes, hepatitis C, and both alcoholic and nonalcoholic fatty liver disease. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the level of translation. Approximately 1000 different miRNA species are encoded within the human genome, and many are differentially expressed by healthy and diseased liver. However, few studies have investigated the role of miRNAs in regulating LD expression. Accordingly, a high-content assay (HCA) was performed in which human hepatocytes (Huh-7 cells) were transiently transfected with 327 unique human miRNAs; the cells were then fixed, labeled for nuclei and lipid droplets, and imaged with an automated digital microscopy workstation. LD expression was analyzed on a cell-by-cell basis, using automated image analysis. Eleven miRNAs were identified that altered LDs. MiR-181d was the most efficacious inhibitor, decreasing LDs by about 60%. miRNA-181d was also confirmed to reduce cellular triglycerides and cholesterol ester via biochemical assays. Furthermore, a series of proteins was identified via miRNA target analysis, and siRNAs directed against many of these proteins also modified LDs. Thus, HCA-based screening identified novel miRNA and protein regulators of LDs and cholesterol metabolism that may be relevant to hepatic diseases arising from obesity and alcohol abuse.


Asunto(s)
Hepatocitos/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Metabolismo de los Lípidos , MicroARNs/metabolismo , Línea Celular Tumoral , Colesterol/metabolismo , Biblioteca de Genes , Humanos , Espacio Intracelular/metabolismo , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados , Triglicéridos/metabolismo
11.
Nature ; 464(7291): 1048-51, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20393563

RESUMEN

Primary cilia are evolutionarily conserved cellular organelles that organize diverse signalling pathways. Defects in the formation or function of primary cilia are associated with a spectrum of human diseases and developmental abnormalities. Genetic screens in model organisms have discovered core machineries of cilium assembly and maintenance. However, regulatory molecules that coordinate the biogenesis of primary cilia with other cellular processes, including cytoskeletal organization, vesicle trafficking and cell-cell adhesion, remain to be identified. Here we report the results of a functional genomic screen using RNA interference (RNAi) to identify human genes involved in ciliogenesis control. The screen identified 36 positive and 13 negative ciliogenesis modulators, which include molecules involved in actin dynamics and vesicle trafficking. Further investigation demonstrated that blocking actin assembly facilitates ciliogenesis by stabilizing the pericentrosomal preciliary compartment (PPC), a previously uncharacterized compact vesiculotubular structure storing transmembrane proteins destined for cilia during the early phase of ciliogenesis. The PPC was labelled by recycling endosome markers. Moreover, knockdown of modulators that are involved in the endocytic recycling pathway affected the formation of the PPC as well as ciliogenesis. Our results uncover a critical regulatory step that couples actin dynamics and endocytic recycling with ciliogenesis, and also provides potential target molecules for future study.


Asunto(s)
Cilios/genética , Cilios/fisiología , Actinas/metabolismo , Línea Celular , Cilios/efectos de los fármacos , Cilios/patología , Citocalasina D/farmacología , Endocitosis , Humanos , Interferencia de ARN , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
12.
Biochem Biophys Res Commun ; 394(1): 194-9, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20188705

RESUMEN

Binding of leukocyte specific integrin CD11b/CD18 to its physiologic ligands is important for the development of normal immune response in vivo. Integrin CD11b/CD18 is also a key cellular effector of various inflammatory and autoimmune diseases. However, small molecules selectively inhibiting the function of integrin CD11b/CD18 are currently lacking. We used a newly described cell-based high-throughput screening assay to identify a number of highly potent antagonists of integrin CD11b/CD18 from chemical libraries containing >100,000 unique compounds. Computational analyses suggest that the identified compounds cluster into several different chemical classes. A number of the newly identified compounds blocked adhesion of wild-type mouse neutrophils to CD11b/CD18 ligand fibrinogen. Mapping the most active compounds against chemical fingerprints of known antagonists of related integrin CD11a/CD18 shows little structural similarity, suggesting that the newly identified compounds are novel and unique.


Asunto(s)
Antígeno CD11b/metabolismo , Antígenos CD18/metabolismo , Ensayos Analíticos de Alto Rendimiento , Bibliotecas de Moléculas Pequeñas , Animales , Ligandos , Ratones , Ratones Endogámicos , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología
14.
J Reprod Dev ; 52(1): 73-80, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16293944

RESUMEN

As the first step in investigating the possiblity of applying ribozyme technology to artificial control of the sex ratios at birth in farm animals, where the demand for females exceeds that for males, we designed a hammerhead ribozyme (HHRz) and 2 tRNA(val)-hammerhead ribozyme complexes (tRNARz3 and tRNARz4), and examined their effects upon murine Sry mRNA in vitro and in cells. We demonstrated that HHRz and tRNARz3 could effectively cleave the target Sry mRNA in vitro. For the purpose of experiments in vivo, HHRz was cloned into the highly efficient pUC-CAGGS mammalian expression vector (pCAG/HHRz), and the tRNA ribozyme complexes were cloned into the pol III promoter-driven pPUR-KE vector (pPUR/tRNARz3 and pPUR/tRNARz4); the ribozyme vectors were co-transfected with the target vector (pCAG/Sry). A suppressive action (up to approx. 60%) was confirmed for pCAG/HHRz and pPUR/tRNARz3 upon the transiently expressed exogenously introduced Sry in M15 cultured cells.


Asunto(s)
Genes sry , ARN Catalítico/farmacología , ARN Mensajero/efectos de los fármacos , Animales , Secuencia de Bases , Células Cultivadas , Femenino , Expresión Génica , Masculino , Ratones , Datos de Secuencia Molecular , ARN Catalítico/síntesis química , ARN de Transferencia de Valina , Razón de Masculinidad
15.
J Muscle Res Cell Motil ; 25(4-5): 303-8, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15548858

RESUMEN

Metastatic tumor cells can migrate from one place to another in the body. This involves their adherence to host cell layers and subsequent transcellular movements by a complex process, molecular basis of which are yet to be clarified. Elucidation of genes functionally involved in metastasis may lead to deeper understanding of the mechanism of cell migration, and identification and designing of metastasis-modulating strategies for cancer therapeutics. We review here cell migration in tumor metastasis and the use of small RNA-based approaches to identify functional genes. We then describe our promising novel approach that uses randomized ribozyme libraries for identification of genes involved in cell migration, a consistent feature of metastatic cells.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Quimiotaxis/fisiología , Invasividad Neoplásica/patología , Células Neoplásicas Circulantes/patología , Animales , Regulación Neoplásica de la Expresión Génica , Humanos , ARN Catalítico/fisiología , ARN Interferente Pequeño/fisiología , Células Tumorales Cultivadas
16.
J Biol Chem ; 279(49): 51622-9, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15448151

RESUMEN

We have employed the hybrid hammerhead ribozyme-based gene discovery system for identification of genes functionally involved in muscle differentiation using in vitro myoblast differentiation assay. The major muscle regulatory genes (MyoD1, Mylk, myosin, myogenin, and Myf5) were identified endorsing the validity of this method. Other gene targets included tumor suppressors and cell cycle regulators (p19ARF and p21WAF1), FGFR-4, fibronectin, Prkg2, Pdk4, fem, and six novel proteins. Functional involvement of three of the identified targets in myoblast differentiation was confirmed by their specific knockdown using ribozymes and siRNA. Besides demonstrating a simple and an effective method of isolation of gene functions involved in muscle differentiation, we report for the first time that overexpression of Fem, a member of the sex-determining family of proteins, caused accelerated myotube formation, and its targeting deferred myoblast differentiation. This functional gene screening is not only helpful in understanding the molecular pathways of muscle differentiation but also to design molecular strategies for myopathologic therapies.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Biblioteca de Genes , Técnicas Genéticas , Músculos/citología , ARN Catalítico/genética , Animales , Secuencia de Bases , Caenorhabditis elegans , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Ratones , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Interferente Pequeño/metabolismo , Transfección
17.
Protein Eng Des Sel ; 17(6): 501-8, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15292519

RESUMEN

Ribosome display systems are very effective and powerful tools for in vitro screening of transcribed mRNAs that encode proteins (or peptides) with specific (known or unknown) functions. We have modified such a system by exploiting the interaction between a tandemly fused MS2 coat-protein (MSp) dimer and the RNA sequence of the corresponding specific binding motif, C-variant (or Cv). We placed the MSp dimer at the N-terminus of a nascent protein and the Cv binding motif was attached to the 5' end of the protein's mRNA. This configuration enhanced the stability of the ribosome-mRNA complex. We demonstrate here that this improved ribosome display system provides an effective method for identifying the gene for a protein that binds to a protein of interest. We visualized the formation of polysome complexes in this advanced polysome display by atomic force microscopy (AFM) and found that the AFM images of polysomes in our system were different from those observed in the case of conventional ribosome display systems. Our results suggest that our technology might usefully complement yeast two-hybrid assays.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Proteínas de la Cápside/genética , Sistema Libre de Células/metabolismo , ADN/genética , Glutatión/química , Humanos , Proteínas de la Membrana/genética , Microscopía de Fuerza Atómica , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Polirribosomas/ultraestructura , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sefarosa/química , Tetrahidrofolato Deshidrogenasa/genética , Transcripción Genética , Proteína Destructora del Antagonista Homólogo bcl-2 , Proteína bcl-X
18.
J Biol Chem ; 279(37): 38083-6, 2004 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-15247279

RESUMEN

Libraries of randomized ribozymes have considerable potential as tools for the identification of functional genes critically involved in a biological phenotype of interest in vitro. We have used a ribozyme library in an in vivo mouse model to identify genes related to metastasis. We injected weakly metastatic melanoma cells that had been treated with the library intravenously into mice. We then isolated ribozymes that accelerated metastasis from pulmonary tumors that had developed from metastasizing cells. As candidates for metastasis-related genes that were targets of the isolated ribozymes, we identified five unknown and three known genes: stromal interaction molecule 1 (STIM1), polymerase gamma2 accessory subunit (Polg2), and cytochrome P450, family 2, subfamily d, polypeptide 22 (Cyp2d22). Repression of four of these by small interfering RNAs indeed resulted in the accelerated mobility of cells in in vitro scratch-wound assay. The further characterization of these candidate genes would provide clues to the complex mechanism(s) of metastasis.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Biblioteca de Genes , Técnicas Genéticas , ARN Catalítico/química , Animales , Secuencia de Bases , Canales de Calcio , Línea Celular Tumoral , Sistema Enzimático del Citocromo P-450/genética , Familia 2 del Citocromo P450 , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/genética , Silenciador del Gen , Vectores Genéticos , Neoplasias Pulmonares/patología , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Metástasis de la Neoplasia , Trasplante de Neoplasias , Conformación de Ácido Nucleico , Fenotipo , Plásmidos/metabolismo , ARN/química , ARN Interferente Pequeño/metabolismo , Distribución Aleatoria , Retroviridae/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Molécula de Interacción Estromal 1 , Transfección , Cicatrización de Heridas
19.
J Gene Med ; 6(3): 357-63, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15026997

RESUMEN

BACKGROUND: Metastatic properties of tumors involve movement of cancerous cells from one place to another and tissue invasion. Metastatic cells have altered cell adhesion and movement that can be examined by in vitro chemotaxis assays. The Rho/ROCK/LIM kinase pathway is one of the major signaling pathways involved in tumor metastasis. It is involved in the regulation of the actin cytoskeleton. Using the randomized ribozyme library, we initially found that metastatic human fibrosarcoma cells harboring ribozyme specific for ROCK lose their metastatic properties. In this study, we have determined the effect of ribozymes specific for LIM kinase-2 on metastatic and proliferative phenotypes of human fibrosarcoma cells. METHODS: We attempted to target LIM kinase-2 (LIMK-2) expression by hammerhead ribozymes (Rz) in human metastatic fibrosarcoma cells. An effective ribozyme was selected based on the expression analysis. Cells were stably transfected with Rz specifically effective for LIMK-2 and were examined for metastatic and proliferative properties. RESULTS: Analyses of cellular phenotypes such as cell proliferation, cell migration and colony-forming efficiency revealed that the suppression of LIMK-2 expression in human fibrosarcoma cells limits their migration and dense colony-forming efficiency without affecting cell proliferation rate or viability. CONCLUSIONS: Specific targeting of metastatic and malignant properties of tumor cells by LIMK-2 ribozyme may serve as an effective therapy for invasive tumors with minimum effect on the surrounding normal cells.


Asunto(s)
Proteínas de Unión al ADN/antagonistas & inhibidores , Metástasis de la Neoplasia/terapia , ARN Catalítico/genética , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular , Supervivencia Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Vectores Genéticos , Humanos , Quinasas Lim , Datos de Secuencia Molecular , Estructura Molecular , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas , ARN Mensajero/análisis , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia de Valina/genética , Ensayo de Tumor de Célula Madre
20.
EMBO J ; 23(4): 959-68, 2004 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-14765129

RESUMEN

Various types of stress, such as disruption of calcium homeostasis, inhibition of protein glycosylation and reduction of disulfide bonds, result in accumulation of misfolded proteins in the endoplasmic reticulum (ER). The initial cellular response involves removal of such proteins by the ER, but excessive and/or long-term stress results in apoptosis. In this study, we used a randomized ribozyme library and ER stress-mediated apoptosis (tunicamycin-induced apoptosis) in SK-N-SH human neuroblastoma cells as a selective phenotype to identify factors involved in this process. We identified a double-stranded RNA-dependent protein kinase (PKR) as one of the participants in this process. The level of nuclear PKR was elevated, but the level of cytoplasmic PKR barely changed in tunicamycin-treated SK-N-SH cells. Furthermore, tunicamycin also raised levels of phosphorylated PKR in the nucleus. We also detected the accumulation of phosphorylated PKR in the nuclei of autopsied brain tissues in Alzheimer's disease. Thus, PKR might play a role in ER stress-induced apoptosis and in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Apoptosis , Tunicamicina/farmacología , eIF-2 Quinasa/metabolismo , Anciano , Encéfalo/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Fosforilación , ARN Catalítico/genética , Transducción de Señal , Células Tumorales Cultivadas , eIF-2 Quinasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...