Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Front Pharmacol ; 15: 1397288, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962307

RESUMEN

Background: As drug-metabolizing enzyme activities are affected by a variety of factors, such as drug-drug interactions, a method to evaluate drug-metabolizing enzyme activities in real time is needed. In this study, we developed a novel SPECT imaging probe for evaluation of hepatic CYP2D activity. Methods: Iodine-123- and 125-labeled 4-iodobenzylmequitazine (123/125I-BMQ) was synthesized with high labeling and purity. CYP isozymes involved in the metabolism of 125I-BMQ in mouse liver microsomes were evaluated, and the utility of 123/125I-was assessed from biological distribution and SPECT imaging evaluation in normal and CYP2D-inhibited mice. Results: In vitro metabolite analysis using mouse liver microsomes showed that 125I-BMQ is specifically metabolized by CYP2D. Biological distribution and SPECT imaging of 123/125I-BMQ in normal mice showed that injection 123/125I-BMQ accumulated early in the liver and was excreted into the gallbladder and intestines. In CYP2D-inhibited mice, accumulation in the liver was increased, but accumulation in the gallbladder and intestines, the excretory organ, was delayed. Since only metabolites of 125I-BMQ are detected in bile, visualization and measuring of the accumulation of metabolites over time in the intestine, where bile is excreted, could predict the amount of metabolites produced in the body and evaluate CYP2D activity, which would be useful in determining the dosage of various drugs metabolized by CYP2D. Conclusion: 123/125I-BMQ is useful as a SPECT imaging probe for comprehensive and direct assessment of hepatic CYP2D activity in a minimally invasive and simple approach.

2.
Sci Rep ; 14(1): 758, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191647

RESUMEN

Cough is known as a protective reflex to keep the airway free from harmful substances. Although brain activity during cough was previously examined mainly by functional magnetic resonance imaging (fMRI) with model analysis, this method does not capture real brain activity during cough. To obtain accurate measurements of brain activity during cough, we conducted whole-brain scans during different coughing tasks while correcting for head motion using a restraint-free positron emission tomography (PET) system. Twenty-four healthy right-handed males underwent multiple PET scans with [15O]H2O. Four tasks were performed during scans: "resting"; "voluntary cough (VC)", which simply repeated spontaneous coughing; "induced cough (IC)", where participants coughed in response to an acid stimulus in the cough-inducing method with tartaric acid (CiTA); and "suppressed cough (SC)", where coughing was suppressed against CiTA. The whole brain analyses of motion-corrected data revealed that VC chiefly activated the cerebellum extending to pons. In contrast, CiTA-related tasks (IC and SC) activated the higher sensory regions of the cerebral cortex and associated brain regions. The present results suggest that brain activity during simple cough is controlled chiefly by infratentorial areas, whereas manipulating cough predominantly requires the higher sensory brain regions to allow top-down control of information from the periphery.


Asunto(s)
Tos , Tomografía Computarizada por Rayos X , Masculino , Humanos , Encéfalo/diagnóstico por imagen , Cerebelo , Corteza Cerebral
3.
J Control Release ; 359: 384-399, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37315691

RESUMEN

The nose-to-brain (N2B) pathway has garnered attention because it transports drugs directly into the brain. Although recent studies have suggested the necessity of selective drug administration to the olfactory region for effective N2B drug delivery, the importance of delivering the formulation to the olfactory region and the detailed pathway involved in drug uptake in primates brain remain unclear. Here, we developed a combination system for N2B drug delivery comprising a proprietary mucoadhesive powder formulation and a dedicated nasal device (N2B-system) and evaluated it for nasal drug delivery to the brain in cynomolgus monkeys. This N2B-system demonstrated a much greater formulation distribution ratio in the olfactory region in an in vitro experiment using a 3D-printed nasal cast and in vivo experiment using cynomolgus monkeys, as compared to that in other nasal drug delivery systems that comprise of a proprietary nasal powder device developed for nasal absorption and vaccination and a commercially available liquid spray. Additionally, Texas Red-labeled dextran (TR-DEX, 3 kDa) was administered using the N2B-system to estimate the drug transition pathway from the nasal cavity to the brain. TR-DEX preferentially localized to the olfactory epithelium and reached the olfactory bulb through the cribriform foramina. Moreover, domperidone, a model drug with poor blood-brain barrier permeability, was administered to assess the brain uptake of medicine after olfactory region-selective administration by using the N2B-system. Domperidone accumulation in the brain was evaluated using positron emission tomography with intravenously administered [18F]fallypride based on competitive inhibition of the dopamine D2 receptor (D2R). Compared to other systems, the N2B-system significantly increased D2R occupancy and domperidone uptake in the D2R-expressing brain regions. The current study reveals that the olfactory region of the nasal cavity is a suitable target for efficient nasal drug delivery to the brain in cynomolgus monkeys. Thus, the N2B-system, which targets the olfactory region, provides an efficient approach for developing effective technology for nasal drug delivery to the brain in humans.


Asunto(s)
Encéfalo , Domperidona , Humanos , Animales , Administración Intranasal , Polvos , Domperidona/metabolismo , Domperidona/farmacología , Macaca fascicularis , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Preparaciones Farmacéuticas/metabolismo
4.
Mol Imaging Biol ; 25(4): 648-658, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37193805

RESUMEN

PURPOSE: Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer phototherapy using an antibody-photosensitizer conjugate (Ab-IR700). By NIR light irradiation, Ab-IR700 forms a water-insoluble aggregation on the plasma membrane of cancer cells, leading to lethal membrane damage of cancer cells with high selectivity. However, IR700 produces singlet oxygen, which induces non-selective inflammatory responses such as edema in normal tissues around the tumor. Understanding such treatment-emergent responses is important to minimize side effects and improve clinical outcomes. Thus, in this study, we evaluated physiological responses during NIR-PIT by magnetic resonance imaging (MRI) and positron emission tomography (PET). PROCEDURES: Ab-IR700 was intravenously injected into tumor-bearing mice with two tumors on the right and left sides of the dorsum. At 24 h after injection, a tumor was irradiated with NIR light. Edema formation was examined by T1/T2/diffusion-weighted MRI and inflammation was investigated by PET with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). Because inflammation can increase vascular permeability via inflammatory mediators, we evaluated changes in oxygen levels in tumors using a hypoxia imaging probe, [18F]fluoromisonidazole ([18F]FMISO). RESULTS: The uptake of [18F]FDG in the irradiated tumor was significantly decreased compared to the control tumor, indicating the impairment of glucose metabolism induced by NIR-PIT. MRI and [18F]FDG-PET images showed that inflammatory edema with [18F]FDG accumulation was present in the surrounding normal tissues of the irradiated tumor. Furthermore, [18F]FMISO accumulation in the center of the irradiated tumor was relatively low, indicating the enhancement of oxygen supply due to increased vascular permeability. In contrast, high [18F]FMISO accumulation was observed in the peripheral region, indicating enhancement of hypoxia in the region. This could be because inflammatory edema was formed in the surrounding normal tissues, which blocked blood flow to the tumor. CONCLUSIONS: We successfully monitored inflammatory edema and changes in oxygen levels during NIR-PIT. Our findings on the acute physiological responses after light irradiation will help to develop effective measures to minimize the side effects in NIR-PIT.


Asunto(s)
Inmunoconjugados , Neoplasias , Animales , Ratones , Fluorodesoxiglucosa F18 , Línea Celular Tumoral , Fototerapia/métodos , Inmunoterapia/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias/terapia , Neoplasias/tratamiento farmacológico
5.
Bioorg Med Chem ; 84: 117260, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003156

RESUMEN

The accumulation of radiolabeled phosphonium cations in cells is dependent on the mitochondrial membrane potential (MMP). However, the efflux of these cations from tumor cells via P-glycoprotein (P-gp) limits their clinical application as MMP-based imaging tracers. In the present study, we designed (E)-diethyl-4-[125I]iodobenzyl-4-stilbenylphosphonium ([125I]IDESP), which contains a stilbenyl substituent, as a P-gp inhibitor to reduce P-gp recognition, and evaluated its biological properties in comparison with 4-[125I]iodobenzyl dipropylphenylphosphonium ([125I]IDPP). The in vitro cellular uptake ratio of [125I]IDESP in P-gp expressing K562/Vin cells to the parent (P-gp negative) K562 cells was significantly higher than that of [125I]IDPP. The efflux rate of [125I]IDESP was not significantly different between K562 and K562/Vin, while [125I]IDPP was rapidly effluxed from K562/Vin compared with K562, and the efflux of [125I]IDPP from K562/Vin was inhibited by the P-gp inhibitor, cyclosporine A. The cellular uptake of [125I]IDESP was well correlated with the MMP levels. These results suggested that [125I]IDESP was accumulated in cells depending on the MMP levels, without being effluxed via P-gp, while [125I]IDPP was rapidly effluxed from the cells via P-gp. Despite having suitable in vitro properties for MMP-based imaging, [125I]IDESP showed rapid blood clearance and lower tumor accumulation than [125I]IDPP. Improvement in the normal tissue distribution of [125I]IDESP is required to develop an agent for use in in vivo MMP-based tumor imaging.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Radioisótopos de Yodo , Potencial de la Membrana Mitocondrial , Humanos , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Resistencia a Antineoplásicos , Glicoproteínas , Radioisótopos de Yodo/química , Radioisótopos de Yodo/farmacología , Células K562 , Potencial de la Membrana Mitocondrial/fisiología , Ensayo de Unión Radioligante/métodos
6.
Mol Cell Biol ; 42(12): e0014322, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36374104

RESUMEN

Mitochondria play essential and specific roles during erythroid differentiation. Recently, FAM210B, encoding a mitochondrial inner membrane protein, has been identified as a novel target of GATA-1, as well as an erythropoietin-inducible gene. While FAM210B protein is involved in regulate mitochondrial metabolism and heme biosynthesis, its detailed function remains unknown. Here, we generated both knockout and knockdown of endogenous FAM210B in human induced pluripotent stem-derived erythroid progenitor (HiDEP) cells using CRISPR/Cas9 methodology. Intriguingly, erythroid differentiation was more pronounced in the FAM210B-depleted cells, and this resulted in increased frequency of orthochromatic erythroblasts and decreased frequencies of basophilic/polychromatic erythroblasts. Comprehensive metabolite analysis and functional analysis indicated that oxygen consumption rates and the NAD (NAD+)/NADH ratio were significantly decreased, while lactate production was significantly increased in FAM210B deletion HiDEP cells, indicating involvement of FAM210B in mitochondrial energy metabolism in erythroblasts. Finally, we purified FAM210B-interacting protein from K562 cells that stably expressed His/biotin-tagged FAM210B. Mass spectrometry analysis of the His/biotin-purified material indicated interactions with multiple subunits of mitochondrial ATP synthases, such as subunit alpha (ATP5A) and beta (ATP5B). Our results suggested that FAM210B contributes prominently to erythroid differentiation by regulating mitochondrial energy metabolism. Our results provide insights into the pathophysiology of dysregulated hematopoiesis.


Asunto(s)
Biotina , Eritropoyesis , Humanos , Eritropoyesis/genética , Biotina/metabolismo , NAD/metabolismo , Eritroblastos/metabolismo , Mitocondrias/metabolismo , Diferenciación Celular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
7.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36232758

RESUMEN

Drug metabolizing enzyme activity is affected by various factors such as drug-drug interactions, and a method to quantify drug metabolizing enzyme activity in real time is needed. In this study, we developed a novel radiopharmaceutical for quantitative imaging to estimate hepatic CYP3A4 and CYP2D6 activity. Iodine-123- and 125-labeled O-desmethylvenlafaxine (123/125I-ODV) was obtained with high labeling and purity, and its metabolism was found to strongly involve CYP3A4 and CYP2D6. SPECT imaging in normal mice showed that the administered 123I-ODV accumulated early in the liver and was excreted into the gallbladder, as evaluated by time activity curves. In its biological distribution, 125I-ODV administered to mice accumulated early in the liver, and only the metabolite of 125I-ODV was quickly excreted into the bile. In CYP3A4- and CYP2D6-inhibited model mice, the accumulation in bile decreased more than in normal mice, indicating inhibition of metabolite production. These results indicated that imaging and quantifying the accumulation of radioactive metabolites in excretory organs will aid in determining the dosages of various drugs metabolized by CYP3A4 and CYP2D6 for individualized medicine. Thus, 123/125I-ODV has the potential to direct, comprehensive detection and measurement of hepatic CYP3A4 and CYP2D6 activity by a simple and less invasive approach.


Asunto(s)
Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A , Radioisótopos de Yodo , Hígado , Animales , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Succinato de Desvenlafaxina , Radioisótopos de Yodo/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Radiofármacos/farmacología , Clorhidrato de Venlafaxina
8.
Sci Rep ; 12(1): 14562, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028755

RESUMEN

Acquired sideroblastic anemia, characterized by bone marrow ring sideroblasts (RS), is predominantly associated with myelodysplastic syndrome (MDS). Although somatic mutations in splicing factor 3b subunit 1 (SF3B1), which is involved in the RNA splicing machinery, are frequently found in MDS-RS, the detailed mechanism contributing to RS formation is unknown. To explore the mechanism, we established human umbilical cord blood-derived erythroid progenitor-2 (HUDEP-2) cells stably expressing SF3B1K700E. SF3B1K700E expressing cells showed higher proportion of RS than the control cells along with erythroid differentiation, indicating the direct contribution of mutant SF3B1 expression in erythroblasts to RS formation. In SF3B1K700E expressing cells, ABCB7 and ALAS2, known causative genes for congenital sideroblastic anemia, were downregulated. Additionally, mis-splicing of ABCB7 was observed in SF3B1K700E expressing cells. ABCB7-knockdown HUDEP-2 cells revealed an increased frequency of RS formation along with erythroid differentiation, demonstrating the direct molecular link between ABCB7 defects and RS formation. ALAS2 protein levels were obviously decreased in ABCB7-knockdown cells, indicating decreased ALAS2 translation owing to impaired Fe-S cluster export by ABCB7 defects. Finally, RNA-seq analysis of MDS clinical samples demonstrated decreased expression of ABCB7 by the SF3B1 mutation. Our findings contribute to the elucidation of the complex mechanisms of RS formation in MDS-RS.


Asunto(s)
Anemia Sideroblástica , Síndromes Mielodisplásicos , Fosfoproteínas , Factores de Empalme de ARN , 5-Aminolevulinato Sintetasa , Anemia Sideroblástica/genética , Humanos , Mutación , Síndromes Mielodisplásicos/genética , Fosfoproteínas/genética , Factores de Empalme de ARN/genética
9.
Tohoku J Exp Med ; 258(1): 63-68, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35858800

RESUMEN

The detailed clinical course of coronavirus disease 2019 (COVID-19) in patients with hairy cell leukemia (HCL) is rarely reported. We report the first case of HCL diagnosed with prolonged pancytopenia after COVID-19 infection in Japan. We describe the case of a 56-year-old man who was diagnosed with COVID-19. Computed tomography revealed ground-glass opacities in the bilateral lung lobes as well as splenomegaly. Remdesivir and dexamethasone were administered for the treatment of COVID-19. Since the pancytopenia persisted, bone marrow examination was performed, and he was diagnosed with HCL. Although pancytopenia can occur with COVID-19 alone, clinicians should be alerted regarding the presence of hematologic malignancies in patients in whom pancytopenia persists after COVID-19 treatment or in those with splenomegaly. Further, the condition of all previously reported patients with COVID-19 associated with HCL was severe enough to require mechanical ventilation. This is the first case in which the disease was not severe. The interleukin-6 (IL-6) level was lower in this case than in previous cases, suggesting that racial differences in IL-6 production may have contributed to COVID-19 severity.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Coronavirus , Leucemia de Células Pilosas , Pancitopenia , COVID-19/complicaciones , Humanos , Interleucina-6 , Leucemia de Células Pilosas/complicaciones , Leucemia de Células Pilosas/tratamiento farmacológico , Leucemia de Células Pilosas/patología , Masculino , Persona de Mediana Edad , Pancitopenia/complicaciones , Esplenomegalia/complicaciones , Esplenomegalia/patología
10.
Pharmaceutics ; 14(5)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35631611

RESUMEN

Single-photon emission computed tomography (SPECT) imaging using intravenous radioactive ligand administration to indirectly evaluate the time-dependent effect of intranasal drugs with poor blood-brain barrier permeability on brain drug distributions in mice was evaluated. The biodistribution was examined using domperidone, a dopamine D2 receptor ligand, as the model drug, with intranasal administration at 0, 15, or 30 min before intravenous [123I]IBZM administration. In the striatum, [123I]IBZM accumulation was significantly lower after intranasal (IN) domperidone administration than in controls 15 min after intravenous [125I]IBZM administration. [123I]IBZM SPECT was acquired with intravenous (IV) or IN domperidone administration 15 min before [123I]IBZM, and time-activity curves were obtained. In the striatum, [123I]IBZM accumulation was clearly lower in the IN group than in the control and IV groups. Time-activity curves showed no significant difference between the control and IV groups in the striatum, and values were significantly lowest during the first 10 min in the IN group. In the IN group, binding potential and % of receptor occupancy were significantly lower and higher, respectively, compared to the control and IV groups. Thus, brain-migrated domperidone inhibited D2R binding of [123I]IBZM. SPECT imaging is suitable for research to indirectly explore nose-to-brain drug delivery and locus-specific biological distribution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA