Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 12: 1347423, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524916

RESUMEN

In this study, Mg1-xCoxFe2O4 (0≤x ≤ 1 with ∆x = 0.1) or MCFO nanoparticles were synthesized using a chemical co-precipitation method and annealed at 200, 400, 600, and 800°C respectively to investigate the structural properties of the materials by X-ray diffractometer (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR). Controlled annealing increased particle size for each value of x. The aim was to investigate how specific loss power (SLP) and maximum temperature (Tmax) during local magnetic hyperthermia were affected by structural alterations associated with particle size and composition. The lattice parameter, X-ray density, ionic radius, hopping length, bond length, cation-cation distance, and cation-anion distance increase with an increase in Co2+ content. Raman and FTIR spectroscopy reveal changes in cation distribution with Co2+ content and particle size. Magnetic properties measured by the physical property measurement system (PPMS) showed saturation magnetization (Ms), coercivity (Hc), remanent magnetization (Mr/Ms), and anisotropy constant (K1) of the Mg1-xCoxFe2O4 nanoparticles increase with Co2+ content and particle size. When exposed to an rf magnetic field, the nanohybrids experienced an increase in both the SLP (specific loss power) and Tmax (maximum temperature) as the particle size initially increased. However, these values reached their peak at critical particle size and subsequently decreased. This occurs since a modest increase in anisotropy, resulting from the presence of Co2+ and larger particle size, facilitates Néel and Brownian relaxation. However, for high anisotropy values and particle size, the Néel and Brownian relaxations are hindered, leading to the emergence of a critical size. The critical size increases as the Co2+ content decreases, but it decreases as the Co2+ content increases, a consequence of higher anisotropy with the increase in Co2+. Additionally, it is noteworthy that the maximum temperature (Tmax) rises as the concentration of nanohybrids grows, but the specific loss power (SLP) decreases. An increased concentration of chitosan-MCFO nanohybrids inhibits both the Néel and Brownian relaxation processes, reducing specific loss power.

2.
R Soc Open Sci ; 10(10): 230384, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37830020

RESUMEN

We used a hydrothermal technique to develop nano-scale α-Fe2O3 particles and functionalized them with chitosan. An X-ray diffraction study revealed α-Fe2O3 nanoparticles were of single-phase, lattice constants were a = 5.07 Å and c = 13.68 Å, and the grain size was 27 nm. The presence of lattice fringes in the HRTEM image confirmed the crystalline nature of the α-Fe2O3. The Mössbauer spectra reveal a mixed relaxation state, which supports the PPMS studies. Zero-field cooled studies revealed the existence of a Morin transition and blocking temperature. The z-average value of the coated particles by DLS was between 218 and 235 nm, PDI ranged from 0.048 to 0.119, and zeta potential was +46.8 mV. We incubated the Vero and HeLa cell lines for 24 h to study the viability of the nanohybrids at different concentrations. Hyperthermia studies revealed the maximum temperature and specific loss power attained by the hematite-chitosan nanohybrid solution of a concentration between 0.25-4 mg ml-1. The Tmax at the lowest and highest concentrations of 0.25 and 4 mg ml-1 were 42.9 and 48.3°C, while the SLP were 501.6 and 35.5 W g-1, which are remarkably high when the maximum magnetization of α-Fe2O3 nanoparticles was as small as 1.98 emu g-1 at 300 K.

3.
RSC Adv ; 13(21): 14291-14305, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37180022

RESUMEN

Here we present a comprehensive density functional theory (DFT) based ab initio study of copper bismuth oxide CuBi2O4 (CBO) in combination with experimental observations. The CBO samples were prepared following both solid-state reaction (SCBO) and hydrothermal (HCBO) methods. The P4/ncc phase purity of the as-synthesized samples was corroborated by Rietveld refinement of the powdered X-ray diffraction measurements along with Generalized Gradient Approximation of Perdew-Burke-Ernzerhof (GGA-PBE) and the Hubbard interaction U corrected GGA-PBE+U relaxed crystallographic parameters. Scanning and field emission scanning electron micrographs confirmed the particle size of the SCBO and HCBO samples to be ∼250 and ∼60 nm respectively. The GGA-PBE and GGA-PBE+U derived Raman peaks are in better agreement with that of the experimentally observed ones when compared to local density approximation based results. The DFT derived phonon density of states conforms with the absorption bands in Fourier transform infrared spectra. Both structural and dynamic stability criteria of the CBO are confirmed by elastic tensor and density functional perturbation theory-based phonon band structure simulations respectively. The CBO band gap underestimation of GGA-PBE as compared to UV-vis diffuse reflectance derived 1.8 eV was eliminated by tuning the U and the Hartree-Fock exact-exchange mixing parameter αHF in GGA-PBE+U and Heyd-Scuseria-Ernzerhof (HSE06) hybrid functionals respectively. The HSE06 with αHF = 14% yields the optimum linear optical properties of CBO in terms of the dielectric function, absorption, and their derivatives as compared to that of GGA-PBE and GGA-PBE+U functionals. Our as-synthesized HCBO shows ∼70% photocatalytic efficiency in degrading methylene blue dye under 3 h optical illumination. This DFT-guided experimental approach to CBO may help to gain a better understanding of its functional properties.

4.
RSC Adv ; 13(8): 5576-5589, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36798614

RESUMEN

Here we present a detailed ab initio study of two experimentally synthesized bismuth niobate BiNbO4 (BNO) polymorphs within the framework of density functional theory (DFT). We synthesized orthorhombic α-BNO and triclinic ß-BNO using a solid-state reaction technique. The underlying Pnna and P1̄ crystal symmetries along with their respective phase purity have been confirmed from Rietveld refinement of the powdered X-ray diffraction measurements in combination with generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE) based DFT simulations. The scanning electron micrographs revealed average grain sizes to be 500 nm and 1 µm for α-BNO and ß-BNO respectively. The energy-dispersive X-ray spectroscopy identified the Bi, Nb, and O with proper stoichiometry. The phase purity of the as-synthesized samples was further confirmed by comparing the local density approximation (LDA) norm-conserving pseudo-potential based DFT-simulated Raman peaks with that of experimentally measured ones. The relevant bond vibrations detected in Fourier transform infrared spectroscopy were matched with GGA-PBE derived phonon density of states simulation for both polymorphs. The structural stability and the charge dynamics of the polymorphs were verified from elastic stress and born charge tensor simulations respectively. The dynamical stability of the α-BNO was confirmed from phonon band structure simulation using density functional perturbation theory with Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional. The electronic band gaps of 3.08 and 3.36 eV for α-BNO and ß-BNO measured from UV-Vis diffuse reflectance measurements were matched with the sophisticated HSE06 band structure simulation by adjusting the Hartree-Fock exchange parameter. Both GGA-PBE and HSE06 functional were used to simulate complex dielectric function and its derivatives with the help of Fermi's golden rule to define the optical properties in the linear regime. All these may have provided a rigorous theoretical analysis for the experimentally synthesized α-BNO and ß-BNO polymorphs.

5.
Eur Phys J E Soft Matter ; 45(6): 55, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35748998

RESUMEN

The effects of the hydrocarbon chain of lipids on the size distribution of giant unilamellar vesicles (GUVs), kinetics of average size, bending modulus, and elastic modulus of membranes have been investigated. 1,2-dioleoyl-sn-glycero-3-phosphocholine (18:1 (Δ9-Cis) PC (DOPC)), 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (16:1 (Δ9-Cis) PC), and 1,2-ditridecanoyl-sn-glycerol-3-phosphocholine (13:0 PC (DTPC)) lipids were considered. The number of hydrocarbons in a chain of the corresponding lipid was 18, 16, and 13. GUVs were prepared using the natural swelling method under incubation times of 20, 40, 60, 90, 120, and 180 min. The size distribution of vesicles was fitted using the lognormal distribution. The average sizes of DOPC, 16:1 (Δ9-Cis) PC, and DTPC-GUVs increased with the incubation time until 120 min, and then remained steady at 16.7 ± 0.2, 15.2 ± 0.4 and 12.0 ± 0.3 µm for the corresponding lipids. The average size at equilibrium state increased with the number of hydrocarbons. The incubation time-dependent average size was fitted with an exponential growth equation, and then the kinetic constants of 0.028 ± 0.004, 0.036 ± 0.007, and 0.083 ± 0.009 min-1 for DOPC, 16:1 (Δ9-Cis) PC, and DTPC-GUVs, respectively, were obtained. The equilibrium size distribution was fitted by the theoretical equation, and the bending modulus for DOPC, 16:1 (Δ9-Cis) PC, and DTPC membranes were 19.5 ± 0.2, 18.5 ± 0.1 and 14.3 ± 0.1 kBT, respectively. The bending modulus increased with the number of hydrocarbons. The elastic modulus of these membranes was 261 mN/m with a 4% fluctuation. The correlation between the average size and the square root of the bending modulus was supported by theoretical analysis.


Asunto(s)
Hidrocarburos , Liposomas Unilamelares , Módulo de Elasticidad , Cinética , Lípidos , Fosfatidilcolinas
6.
RSC Adv ; 12(13): 7835-7849, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35424744

RESUMEN

Surface-functionalized Mg1-x Co x Fe2O4 (0 ≤ x ≤ 1; Δx = 0.1) can be an exciting candidate as an MRI contrast agent and for thermotherapeutic applications. The figure-of-merit, T 2, relaxivity, r 2, of MRI and specific loss power, SLP, of hyperthermia depend on the structural and magnetic properties of the nanoparticles. We synthesized cobalt-substituted magnesium ferrite Mg1-x Co x Fe2O4 (0 ≤ x ≤ 1 with Δx = 0.1) nanoparticles using a chemical co-precipitation method. The lattice parameter and average crystallite size increase with the increase in cobalt content. The force-constant of FTIR of the tetrahedral sites increases, and that of the octahedral sites decreases with an increase in cobalt content. The room temperature Mössbauer spectra of Mg1-x Co x Fe2O4 show that the Mössbauer absorption area of the A site decreases, and the Mössbauer absorption area of the B site increases with x. The Mössbauer spectra and M-H hysteresis loops at room temperature confirmed that a transition from fast relaxation (superparamagnetic) to mixed slow/fast (superparamagnetic/ferrimagnetic) relaxation occurs with changing cobalt content. The cobalt ion tends to occupy the octahedral B site, which makes the A-B interaction stronger; therefore, we see the above transition. Cytotoxicity experiments on HeLa cells revealed that both chitosan and chitosan-coated magnesium cobalt ferrite nanoparticles are biocompatible. In the Mg1-x Co x Fe2O4 series, both r 2 and SLP increase with x because of the increase in magnetization and anisotropy.

8.
Opt Express ; 23(8): 9911-6, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25969032

RESUMEN

Liquid crystal (LC) contact lenses are emerging as an exciting technology for vision correction. A homeotropically (vertical) aligned LC lens is reported that offers improved optical quality and simplified construction techniques over previously reported LC contact lens designs. The lens has no polarization dependence in the off state and produces a continuous change in optical power of up to 2.00 ± 0.25 D with a voltage applied. The variation in optical power results from the voltage-induced change in refractive index of the nematic LC layer, from 1.52 to a maximum of 1.72. One device substrate is treated with an alignment layer that is a mixture of planar and homeotropic polyimides, rubbed to induce a preferred director orientation in the switched state. Defects that could occur during switching are thus avoided and the lens exhibits excellent optical quality with a continuous variation in focal power.

9.
J Chem Phys ; 131(3): 034502, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19624204

RESUMEN

The entropy of mixing for Ag(x)In(1-x) and Ag(x)Sn(1-x) liquid binary alloys has been systematically investigated by using the perturbation theory. The interionic interactions as one of the basic ingredients are described by a local model pseudopotential. Since the metals forming the concerned alloys are less simple in nature the effect of the sp-d hybridization is appropriately taken into account through the interionic interactions. Results of our calculations across the full range of Ag concentrations are found to be good in agreement with the available experimental data.


Asunto(s)
Aleaciones/química , Entropía , Indio/química , Plata/química , Estaño/química
10.
Phys Rev Lett ; 97(16): 167802, 2006 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-17155435

RESUMEN

Using an atomic force microscope to nanopattern a substrate for liquid crystal alignment, a bend distortion is imposed on a liquid crystal. In regions of large bend the smectic-A phase melts into the nematic phase, and the width of the melted region is measured as a function of temperature. The results are consistent with type-I superconducting (nematic-smectic-A) behavior, wherein a large magnetic field (bend or twist distortion) induces an order to disorder transition. A model that accounts for non-mean-field behavior is presented.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(3 Pt 1): 031701, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-14524782

RESUMEN

A polyimide-coated substrate was rubbed in such a way as to possess two competing easy axes for liquid crystal alignment. On cooling a homeotropically aligned liquid crystal through the smectic-A phase toward the smectic-C phase transition, an increasing tilt of the molecules relative to the layer normal was observed. The tilt was localized to within a smectic-C correlation length of the interface, and was found to increase monotonically with the rubbing strength associated with the preparation of the polyimide surface. The results are discussed in light of the dual easy axis model [T. Shioda et al., Phys. Rev. E 67, 041706 (2003)], and suggest that the two easy axes are not mutually orthogonal.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(4 Pt 1): 041707, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12786377

RESUMEN

A chiral nematic liquid crystal that is tilted by an angle theta(i) with respect to a substrate is subjected to an ac electric field at frequency omega applied parallel to the substrate. The nematic director is found to oscillate azimuthally about the normal to the liquid crystal-substrate interface at frequency omega, indicating that a nonzero polarization perpendicular to the molecular tilt plane exists at the interface. The interfacial polarization, anchoring strength coefficient, and bulk viscosity are obtained by measurements of the oscillation amplitude as a function of omega.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(1 Pt 1): 011704, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12636514

RESUMEN

The cyclic liquid crystalline trimer TPB-(c)9(3) was investigated by optical retardation and Fréedericksz techniques within a few tens of millikelvins of the superheating limit of the nearly second-order nematic-isotropic phase transition. Both the optical retardation and the Fréedericksz bend threshold voltage are in good agreement with tricritical behavior for the transition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...