Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Headache Pain ; 25(1): 114, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014299

RESUMEN

BACKGROUND: Migraine has been associated with functional brain changes including altered connectivity and activity both during and between headache attacks. Recent studies established that the variability of the blood-oxygen-level-dependent (BOLD) signal is an important attribute of brain activity, which has so far been understudied in migraine. In this study, we investigate how time-varying measures of BOLD variability change interictally in episodic migraine patients. METHODS: Two independent resting state functional MRI datasets acquired on 3T (discovery cohort) and 1.5T MRI scanners (replication cohort) including 99 episodic migraine patients (n3T = 42, n1.5T=57) and 78 healthy controls (n3T = 46, n1.5T=32) were analyzed in this cross-sectional study. A framework using time-varying measures of BOLD variability was applied to derive BOLD variability states. Descriptors of BOLD variability states such as dwell time and fractional occupancy were calculated, then compared between migraine patients and healthy controls using Mann-Whitney U-tests. Spearman's rank correlation was calculated to test associations with clinical parameters. RESULTS: Resting-state activity was characterized by states of high and low BOLD signal variability. Migraine patients in the discovery cohort spent more time in the low variability state (mean dwell time: p = 0.014, median dwell time: p = 0.022, maximum dwell time: p = 0.013, fractional occupancy: p = 0.013) and less time in the high variability state (mean dwell time: p = 0.021, median dwell time: p = 0.021, maximum dwell time: p = 0.025, fractional occupancy: p = 0.013). Higher uptime of the low variability state was associated with greater disability as measured by MIDAS scores (maximum dwell time: R = 0.45, p = 0.007; fractional occupancy: R = 0.36, p = 0.035). Similar results were observed in the replication cohort. CONCLUSION: Episodic migraine patients spend more time in a state of low BOLD variability during rest in headache-free periods, which is associated with greater disability. BOLD variability states show potential as a replicable functional imaging marker in episodic migraine.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos Migrañosos , Descanso , Humanos , Trastornos Migrañosos/diagnóstico por imagen , Trastornos Migrañosos/fisiopatología , Femenino , Masculino , Adulto , Estudios Transversales , Descanso/fisiología , Oxígeno/sangre , Persona de Mediana Edad , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Estudios de Cohortes , Adulto Joven
2.
J Intell ; 11(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37888433

RESUMEN

Predictive processes and numerous cognitive, motor, and social skills depend heavily on sequence learning. The visuomotor Serial Reaction Time Task (SRTT) can measure this fundamental cognitive process. To comprehend the neural underpinnings of the SRTT, non-invasive brain stimulation stands out as one of the most effective methodologies. Nevertheless, a systematic list of considerations for the design of such interventional studies is currently lacking. To address this gap, this review aimed to investigate whether repetitive transcranial magnetic stimulation (rTMS) is a viable method of modulating visuomotor sequence learning and to identify the factors that mediate its efficacy. We systematically analyzed the eligible records (n = 17) that attempted to modulate the performance of the SRTT with rTMS. The purpose of the analysis was to determine how the following factors affected SRTT performance: (1) stimulated brain regions, (2) rTMS protocols, (3) stimulated hemisphere, (4) timing of the stimulation, (5) SRTT sequence properties, and (6) other methodological features. The primary motor cortex (M1) and the dorsolateral prefrontal cortex (DLPFC) were found to be the most promising stimulation targets. Low-frequency protocols over M1 usually weaken performance, but the results are less consistent for the DLPFC. This review provides a comprehensive discussion about the behavioral effects of six factors that are crucial in designing future studies to modulate sequence learning with rTMS. Future studies may preferentially and synergistically combine functional neuroimaging with rTMS to adequately link the rTMS-induced network effects with behavioral findings, which are crucial to develop a unified cognitive model of visuomotor sequence learning.

3.
eNeuro ; 10(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36792360

RESUMEN

Memory consolidation processes have traditionally been investigated from the perspective of hours or days. However, recent developments in memory research have shown that memory consolidation processes could occur even within seconds, possibly because of the neural replay of just practiced memory traces during short breaks. Here, we investigate this rapid form of consolidation during statistical learning. We aim to answer (1) whether this rapid consolidation occurs in implicit statistical learning and general skill learning, and (2) whether the duration of rest periods affects these two learning types differently. Human participants performed a widely used statistical learning task-the alternating serial reaction time (ASRT) task-that enables us to measure implicit statistical and general skill learning separately. The ASRT task consisted of 25 learning blocks with a rest period between the blocks. In a between-subjects design, the length of the rest periods was fixed at 15 or 30 s, or the participants could control the length themselves. We found that the duration of rest periods does not affect the amount of statistical knowledge acquired but does change the dynamics of learning. Shorter rest periods led to better learning during the learning blocks, whereas longer rest periods promoted learning also in the between-block rest periods, possibly because of the higher amount of replay. Moreover, we found weaker general skill learning in the self-paced group than in the fixed rest period groups. These results suggest that distinct learning processes are differently affected by the duration of short rest periods.


Asunto(s)
Aprendizaje , Consolidación de la Memoria , Humanos , Memoria , Tiempo de Reacción , Descanso , Destreza Motora
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA