RESUMEN
AIMS: A regimen utilizing Bacille Calmette-Guerin (BCG) and another vaccine system as a booster may represent a promising strategy for the development of an efficient tuberculosis vaccine for adults. In a previous work, we confirmed the ability of Lactococcus lactis fibronectin-binding protein A (FnBPA+) (pValac:ESAT-6), a live mucosal DNA vaccine, to produce a specific immune response in mice after oral immunization. In this study, we examined the immunogenicity of this strain as a booster for the BCG vaccine in mice. METHODS AND RESULTS: After immunization, cytokine and immunoglobulin profiles were measured. The BCG prime L. lactis FnBPA+ (pValac:ESAT-6) boost group was the most responsive group, with a significant increase in splenic pro-inflammatory cytokines IL-17, IFN-γ, IL-6 and TNF-α compared with the negative control. CONCLUSIONS: Based on the results obtained here, we demonstrated that L. lactis FnBPA+ (pValac:ESAT-6) was able to increase the BCG vaccine general immune response. SIGNIFICANCE AND IMPACT OF THE STUDY: This work is of great scientific and social importance because it represents the first step towards the development of a booster to the BCG vaccine using L. lactis as a DNA delivery system.
Asunto(s)
Antígenos Bacterianos/inmunología , Vacuna BCG/inmunología , Proteínas Bacterianas/inmunología , Citocinas/sangre , Interleucina-17/metabolismo , Lactococcus lactis/genética , Vacunas de ADN/inmunología , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Femenino , Interleucina-6 , Lactococcus lactis/metabolismo , Ratones , Factor de Necrosis Tumoral alfaRESUMEN
Due to next-generation sequence technologies, sequencing of bacterial genomes is no longer one of the main bottlenecks in bacterial research and the number of new genomes deposited in public databases continues to increase at an accelerating rate. Among these new genomes, several belong to the same species and were generated for pan-genomic studies. A pan-genomic study allows investigation of strain phenotypic differences based on genotypic differences. Along with a need for good assembly quality, it is also fundamental to guarantee good functional genome annotation of the different strains. In order to ensure quality and standards for functional genome annotation among different strains, we developed and made available PANNOTATOR (http://bnet.egr.vcu.edu/iioab/agenote.php), a web-based automated pipeline for the annotation of closely related and well-suited genomes for pan-genome studies, aiming at reducing the manual work to generate reports and corrections of various genome strains. PANNOTATOR achieved 98 and 76% of correctness for gene name and function, respectively, as result of an annotation transfer, with a similarity cut-off of 70%, compared with a gold standard annotation for the same species. These results surpassed the RAST and BASys softwares by 41 and 21% and 66 and 17% for gene name and function annotation, respectively, when there were reliable genome annotations of closely related species. PANNOTATOR provides fast and reliable pan-genome annotation; thereby allowing us to maintain the research focus on the main genotype differences between strains.