Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(16): 9403-9410, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35385568

RESUMEN

The heating of a chromophore due to internal conversion and its cooling down due to energy dissipation to the solvent are crucial phenomena to characterize molecular photoprocesses. In this work, we simulated the ab initio nonadiabatic dynamics of cytosine, a prototypical chromophore undergoing ultrafast internal conversion, in three solvents-argon matrix, benzene, and water-spanning an extensive range of interactions. We implemented an analytical energy-transfer model to analyze these data and extract heating and cooling times. The model accounts for nonadiabatic effects, and excited- and ground-state energy transfer, and can analyze data from any dataset containing kinetic energy as a function of time. Cytosine heats up in the subpicosecond scale and cools down within 25, 4, and 1.3 ps in argon, benzene, and water, respectively. The time constants reveal that a significant fraction of the benzene and water heating occurs while cytosine is still electronically excited.


Asunto(s)
Benceno , Calefacción , Argón , Citosina , Solventes , Agua
2.
Open Res Eur ; 1: 49, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37645211

RESUMEN

In the Baeck-An (BA) approximation, first-order nonadiabatic coupling vectors are given in terms of adiabatic energy gaps and the second derivative of the gaps with respect to the coupling coordinate. In this paper, a time-dependent (TD) BA approximation is derived, where the couplings are computed from the energy gaps and their second time-derivatives. TD-BA couplings can be directly used in fewest switches surface hopping, enabling nonadiabatic dynamics with any electronic structure methods able to provide excitation energies and energy gradients. Test results of surface hopping with TD-BA couplings for ethylene and fulvene show that the TD-BA approximation delivers a qualitatively correct picture of the dynamics and a semiquantitative agreement with reference data computed with exact couplings. Nevertheless, TD-BA does not perform well in situations conjugating strong couplings and small velocities. Considered the uncertainties in the method, TD-BA couplings could be a competitive approach for inexpensive, exploratory dynamics with a small trajectories ensemble. We also assessed the potential use of TD-BA couplings for surface hopping dynamics with time-dependent density functional theory (TDDFT), but the results are not encouraging due to singlet instabilities near the crossing seam with the ground state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA