Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8097, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062045

RESUMEN

Innervation of the hypothalamic median eminence by Gonadotropin-Releasing Hormone (GnRH) neurons is vital to ensure puberty onset and successful reproduction. However, the molecular and cellular mechanisms underlying median eminence development and pubertal timing are incompletely understood. Here we show that Semaphorin-6A is strongly expressed by median eminence-resident oligodendrocytes positioned adjacent to GnRH neuron projections and fenestrated capillaries, and that Semaphorin-6A is required for GnRH neuron innervation and puberty onset. In vitro and in vivo experiments reveal an unexpected function for Semaphorin-6A, via its receptor Plexin-A2, in the control of median eminence vascular permeability to maintain neuroendocrine homeostasis. To support the significance of these findings in humans, we identify patients with delayed puberty carrying a novel pathogenic variant of SEMA6A. In all, our data reveal a role for Semaphorin-6A in regulating GnRH neuron patterning by tuning the median eminence vascular barrier and thereby controlling puberty onset.


Asunto(s)
Hormona Liberadora de Gonadotropina , Semaforinas , Humanos , Hormona Liberadora de Gonadotropina/metabolismo , Eminencia Media/metabolismo , Permeabilidad Capilar , Neuronas/metabolismo , Pubertad , Semaforinas/genética , Semaforinas/metabolismo
2.
PLoS One ; 18(5): e0285597, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252916

RESUMEN

Atypical chemokine receptor 3 (ACKR3) is a scavenger of the chemokines CXCL11 and CXCL12 and of several opioid peptides. Additional evidence indicates that ACKR3 binds two other non-chemokine ligands, namely the peptide hormone adrenomedullin (AM) and derivatives of the proadrenomedullin N-terminal 20 peptide (PAMP). AM exhibits multiple functions in the cardiovascular system and is essential for embryonic lymphangiogenesis in mice. Interestingly, AM-overexpressing and ACKR3-deficient mouse embryos both display lymphatic hyperplasia. Moreover, in vitro evidence suggested that lymphatic endothelial cells (LECs), which express ACKR3, scavenge AM and thereby reduce AM-induced lymphangiogenic responses. Together, these observations have led to the conclusion that ACKR3-mediated AM scavenging by LECs serves to prevent overshooting AM-induced lymphangiogenesis and lymphatic hyperplasia. Here, we further investigated AM scavenging by ACKR3 in HEK293 cells and in human primary dermal LECs obtained from three different sources in vitro. LECs efficiently bound and scavenged fluorescent CXCL12 or a CXCL11/12 chimeric chemokine in an ACKR3-dependent manner. Conversely, addition of AM induced LEC proliferation but AM internalization was found to be independent of ACKR3. Similarly, ectopic expression of ACKR3 in HEK293 cells did not result in AM internalization, but the latter was avidly induced upon co-transfecting HEK293 cells with the canonical AM receptors, consisting of calcitonin receptor-like receptor (CALCRL) and receptor activity-modifying protein (RAMP)2 or RAMP3. Together, these findings indicate that ACKR3-dependent scavenging of AM by human LECs does not occur at ligand concentrations sufficient to trigger AM-induced responses mediated by canonical AM receptors.


Asunto(s)
Adrenomedulina , Células Endoteliales , Receptores CXCR , Humanos , Adrenomedulina/genética , Quimiocina CXCL11 , Células Endoteliales/metabolismo , Células HEK293 , Hiperplasia , Receptores de Adrenomedulina , Receptores CXCR/genética
3.
J Invest Dermatol ; 143(3): 431-443.e19, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36174717

RESUMEN

Psoriasis is a chronic inflammatory skin disease that often recurs at the same locations, indicating potential epigenetic changes in lesional skin cells. In this study, we discovered that fibroblasts isolated from psoriatic skin lesions retain an abnormal phenotype even after several passages in culture. Transcriptomic profiling revealed the upregulation of several genes, including the extra domain A splice variant of fibronectin and ITGA4 in psoriatic fibroblasts. A phenotypic library screening of small-molecule epigenetic modifier drugs revealed that selective CBP/p300 inhibitors were able to rescue the psoriatic fibroblast phenotype, reducing the expression levels of extra domain A splice variant of fibronectin and ITGA4. In the imiquimod-induced mouse model of psoriasis-like skin inflammation, systemic treatment with A485, a potent CBP/p300 blocker, significantly reduced skin inflammation, immune cell recruitment, and inflammatory cytokine production. Our findings indicate that epigenetic reprogramming might represent a new approach for the treatment and/or prevention of relapses of psoriasis.


Asunto(s)
Dermatitis , Psoriasis , Enfermedades de la Piel , Animales , Ratones , Fibronectinas/metabolismo , Piel/patología , Dermatitis/patología , Enfermedades de la Piel/patología , Inflamación/patología , Fibroblastos/metabolismo , Expresión Génica , Modelos Animales de Enfermedad
4.
J Invest Dermatol ; 142(12): 3313-3326.e13, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35777499

RESUMEN

Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperplasia and hyperkeratosis, immune cell infiltration and vascular remodeling. Despite the emerging recognition of vascular normalization as a potential strategy for managing psoriasis, an in-depth delineation of the remodeled dermal vasculature has been missing. In this study, we exploited 5' single-cell RNA sequencing to investigate the transcriptomic alterations in different subpopulations of blood vascular and lymphatic endothelial cells directly isolated from psoriatic and healthy human skin. Individual subtypes of endothelial cells underwent specific molecular repatterning associated with cell adhesion and extracellular matrix organization. Blood capillaries, in particular, showed upregulation of the melanoma cell adhesion molecule as well as its binding partners and adopted postcapillary venule‒like characteristics during chronic inflammation that are more permissive to leukocyte transmigration. We also identified psoriasis-specific interactions between cis-regulatory enhancers and promoters for each endothelial cell subtype, revealing the dysregulated gene regulatory networks in psoriasis. Together, our results provide more insights into the specific transcriptional responses and epigenetic signatures of endothelial cells lining different vessel compartments in chronic skin inflammation.


Asunto(s)
Dermatitis , Psoriasis , Humanos , Capilares , Vénulas , Células Endoteliales , Psoriasis/genética , Piel , Inflamación
5.
Microsc Microanal ; : 1-10, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35698867

RESUMEN

Three-dimensional fluorescence microscopy is a key technology for inspecting biological samples, ranging from single cells to entire organisms. We recently proposed a novel approach called spatially modulated Selective Volume Illumination Microscopy (smSVIM) to suppress illumination artifacts and to reduce the required number of measurements using an LED source. Here, we discuss a new strategy based on smSVIM for imaging large transparent specimens or voluminous chemically cleared tissues. The strategy permits steady mounting of the sample, achieving uniform resolution over a large field of view thanks to the synchronized motion of the illumination lens and the camera rolling shutter. Aided by a tailored deconvolution method for image reconstruction, we demonstrate significant improvement of the resolution at different magnification using samples of varying sizes and spatial features.

6.
Physiol Rev ; 102(4): 1837-1879, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35771983

RESUMEN

The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules, and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.


Asunto(s)
Células Endoteliales , Vasos Linfáticos , Humanos , Inmunoterapia , Linfangiogénesis , Metástasis Linfática/patología
7.
Angiogenesis ; 25(3): 343-353, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35416527

RESUMEN

Blood vessels form vast networks in all vertebrate organs to sustain tissue growth, repair and homeostatic metabolism, but they also contribute to a range of diseases with neovascularisation. It is, therefore, important to define the molecular mechanisms that underpin blood vessel growth. The receptor tyrosine kinase KIT is required for the normal expansion of hematopoietic progenitors that arise during embryogenesis from hemogenic endothelium in the yolk sac and dorsal aorta. Additionally, KIT has been reported to be expressed in endothelial cells during embryonic brain vascularisation and has been implicated in pathological angiogenesis. However, it is neither known whether KIT expression is widespread in normal organ endothelium nor whether it promotes blood vessel growth in developing organs. Here, we have used single-cell analyses to show that KIT is expressed in endothelial cell subsets of several organs, both in the adult and in the developing embryo. Knockout mouse analyses revealed that KIT is dispensable for vascularisation of growing organs in the midgestation embryo, including the lung, liver and brain. By contrast, vascular changes emerged during late-stage embryogenesis in these organs from KIT-deficient embryos, concurrent with severe erythrocyte deficiency and growth retardation. These findings suggest that KIT is not required for developmental tissue vascularisation in physiological conditions, but that KIT deficiency causes foetal anaemia at late gestation and thereby pathological vascular remodelling.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Animales , Embrión de Mamíferos , Femenino , Ratones , Ratones Noqueados , Neovascularización Patológica , Neovascularización Fisiológica/genética , Embarazo , Saco Vitelino/irrigación sanguínea
8.
Cells ; 11(7)2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35406678

RESUMEN

Ample evidence pinpoints the phenotypic diversity of blood vessels (BVs) and site-specific functions of their lining endothelial cells (ECs). We harnessed single-cell RNA sequencing (scRNA-seq) to dissect the molecular heterogeneity of blood vascular endothelial cells (BECs) in healthy adult human skin and identified six different subpopulations, signifying arterioles, post-arterial capillaries, pre-venular capillaries, post-capillary venules, venules and collecting venules. Individual BEC subtypes exhibited distinctive transcriptomic landscapes associated with diverse biological pathways. These functionally distinct dermal BV segments were characterized by their unique compositions of conventional and novel markers (e.g., arteriole marker GJA5; arteriole capillary markers ASS1 and S100A4; pre-venular capillary markers SOX17 and PLAUR; venular markers EGR2 and LRG1), many of which have been implicated in vascular remodeling upon inflammatory responses. Immunofluorescence staining of human skin sections and whole-mount skin blocks confirmed the discrete expression of these markers along the blood vascular tree in situ, further corroborating BEC heterogeneity in human skin. Overall, our study molecularly refines individual BV compartments, whilst the identification of novel subtype-specific signatures provides more insights for future studies dissecting the responses of distinct vessel segments under pathological conditions.


Asunto(s)
Células Endoteliales , Transcriptoma , Adulto , Biomarcadores/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Perfilación de la Expresión Génica , Humanos , Transcriptoma/genética , Vénulas
9.
Cells ; 12(1)2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36611965

RESUMEN

The lymphatic vascular system plays a fundamental role in inflammation by draining interstitial fluid, immune cells, antigens, and inflammatory mediators from peripheral tissues. Site-specific delivery of the lymphangiogenic growth factor VEGF-C alleviates acute inflammation in mouse models of psoriasis and chronic colitis by enhancing local drainage. However, it is unclear whether therapeutically induced lymphangiogenesis is transient or long-lasting and whether it might prevent relapses of inflammation. Here, we investigated the long-term effects of targeted VEGF-C delivery in a chronic dermatitis model in mice. Congruent with our previous results, intravenous injection with a VEGF-C fusion protein targeted to the EDA domain of fibronectin initially resulted in reduced inflammation. Importantly, we found that targeted VEGF-C-mediated expansion of lymphatic vessels in the skin persisted for more than 170 days, long after primary inflammation had resolved. Furthermore, the treatment markedly decreased tissue swelling upon inflammatory re-challenge at the same site. Simultaneously, infiltration of leukocytes, including CD4+ T cells, macrophages, and dendritic cells, was significantly reduced in the previously treated group. In conclusion, our data show that targeted delivery of VEGF-C leads to long-lasting lymphatic expansion and long-term protection against repeated inflammatory challenge, suggesting that it is a promising new approach for the treatment of chronic, recurrent inflammatory diseases.


Asunto(s)
Dermatitis , Vasos Linfáticos , Ratones , Animales , Factor C de Crecimiento Endotelial Vascular/metabolismo , Inflamación/metabolismo , Vasos Linfáticos/metabolismo , Dermatitis/metabolismo , Anticuerpos/metabolismo
10.
FASEB J ; 35(11): e22017, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34699642

RESUMEN

Cellular interactions between endothelial cells and macrophages regulate macrophage localization and phenotype, but the mechanisms underlying these interactions are poorly understood. Here we explored the role of sialoglycans on lymphatic endothelial cells (LEC) in interactions with macrophage-expressed Siglec-1 (CD169). Lectin-binding assays and mass spectrometric analyses revealed that LEC from human skin express more sialylated glycans than the corresponding blood endothelial cells. Higher amounts of sialylated and/or sulfated glycans on LEC than BEC were consistently observed in murine skin, lung and lymph nodes. The floor LEC of the subcapsular sinus (SCS) in murine lymph nodes (LN) displayed sialylated glycans at particularly high densities. The sialoglycans of LN LEC were strongly bound by Siglec-1. Such binding plays an important role in the localization of Siglec-1+ LN-SCS macrophages, as their numbers are strongly reduced in mice expressing a Siglec-1 mutant that is defective in sialoglycan binding. The residual Siglec-1+ macrophages are less proliferative and have a more anti-inflammatory phenotype. We propose that the densely clustered, sialylated glycans on the SCS floor LEC are a key component of the macrophage niche, providing anchorage for the Siglec-1+ LN-SCS macrophages.


Asunto(s)
Células Endoteliales/metabolismo , Ganglios Linfáticos/metabolismo , Macrófagos/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Piel/metabolismo , Animales , Células CHO , Cricetulus , Células Endoteliales/citología , Humanos , Ganglios Linfáticos/citología , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Cultivo Primario de Células , Piel/citología
11.
Front Cell Dev Biol ; 9: 648630, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395414

RESUMEN

In the mouse embryo, endothelial cell (EC) progenitors almost concomitantly give rise to the first blood vessels in the yolk sac and the large vessels of the embryo proper. Although the first blood cells form in the yolk sac before blood vessels have assembled, consecutive waves of hematopoietic progenitors subsequently bud from hemogenic endothelium located within the wall of yolk sac and large intraembryonic vessels in a process termed endothelial-to-hematopoietic transition (endoHT). The receptor tyrosine kinase KIT is required for late embryonic erythropoiesis, but KIT is also expressed in hematopoietic progenitors that arise via endoHT from yolk sac hemogenic endothelium to generate early, transient hematopoietic waves. However, it remains unclear whether KIT has essential roles in early hematopoiesis. Here, we have combined single-cell expression studies with the analysis of knockout mice to show that KIT is dispensable for yolk sac endoHT but required for transient definitive hematopoiesis in the fetal liver.

12.
Cancer Res ; 81(15): 4133-4144, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34099493

RESUMEN

Lymph node (LN)-resident lymphatic endothelial cells (LEC) mediate peripheral tolerance by self-antigen presentation on MHC-I and constitutive expression of T-cell inhibitory molecules, including PD-L1 (CD274). Tumor-associated LECs also upregulate PD-L1, but the specific role of lymphatic PD-L1 in tumor immunity is not well understood. In this study, we generated a mouse model lacking lymphatic PD-L1 expression and challenged these mice with two orthotopic tumor models, B16F10 melanoma and MC38 colorectal carcinoma. Lymphatic PD-L1 deficiency resulted in consistent expansion of tumor-specific CD8+ T cells in tumor-draining LNs in both tumor models, reduced primary tumor growth in the MC38 model, and increased efficacy of adoptive T-cell therapy in the B16F10 model. Strikingly, lymphatic PD-L1 acted primarily by inducing apoptosis in tumor-specific CD8+ central memory T cells. Overall, these findings demonstrate that LECs restrain tumor-specific immunity via PD-L1, which may explain why some patients with cancer without PD-L1 expression in the tumor microenvironment still respond to PD-L1/PD-1-targeted immunotherapy. SIGNIFICANCE: A new lymphatic-specific PD-L1 knockout mouse model reveals that lymphatic endothelial PD-L1 expression reduces tumor immunity, inducing apoptosis in tumor-specific CD8+ central memory cells in tumor-draining lymph nodes.


Asunto(s)
Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/metabolismo , Linfocitos T/metabolismo , Animales , Humanos , Ratones , Ratones Noqueados , Transfección
13.
J Exp Med ; 218(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33988714

RESUMEN

Dendritic cell (DC) migration to draining lymph nodes (dLNs) is a slow process that is believed to begin with DCs approaching and entering into afferent lymphatic capillaries. From capillaries, DCs slowly crawl into lymphatic collectors, where lymph flow induced by collector contraction supports DC detachment and thereafter rapid, passive transport to dLNs. Performing a transcriptomics analysis of dermal endothelial cells, we found that inflammation induces the degradation of the basement membrane (BM) surrounding lymphatic collectors and preferential up-regulation of the DC trafficking molecule VCAM-1 in collectors. In crawl-in experiments performed in ear skin explants, DCs entered collectors in a CCR7- and ß1 integrin-dependent manner. In vivo, loss of ß1-integrins in DCs or of VCAM-1 in lymphatic collectors had the greatest impact on DC migration to dLNs at early time points when migration kinetics favor the accumulation of rapidly migrating collector DCs rather than slower capillary DCs. Taken together, our findings identify collector entry as a critical mechanism enabling rapid DC migration to dLNs in inflammation.


Asunto(s)
Movimiento Celular/fisiología , Células Dendríticas/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Ganglios Linfáticos/metabolismo , Vasos Linfáticos/metabolismo , Regulación hacia Arriba/fisiología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Membrana Basal/metabolismo , Membrana Basal/fisiopatología , Células Dendríticas/fisiología , Células Endoteliales/fisiología , Femenino , Humanos , Inflamación/fisiopatología , Integrina beta1/metabolismo , Ganglios Linfáticos/fisiopatología , Vasos Linfáticos/fisiopatología , Ratones , Ratones Endogámicos C57BL , Receptores CCR7/metabolismo , Piel/metabolismo , Piel/fisiopatología , Activación Transcripcional/fisiología
14.
Cell Rep ; 35(2): 108993, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852863

RESUMEN

Although the contribution of macrophages to metastasis is widely studied in primary tumors, the involvement of macrophages in tumor-draining lymph nodes (LNs) in this process is less clear. We find CD169+ macrophages as the predominant macrophage subtype in naive LNs, which undergo proliferative expansion in response to tumor stimuli. CD169+ LN macrophage depletion, using an anti-CSF-1R antibody or clodronate-loaded liposomes, leads to increased metastatic burden in two mouse breast cancer models. The expansion of CD169+ macrophages is tightly connected to B cell expansion in tumor-draining LNs, and B cell depletion abrogates the effect of CD169+ macrophage absence on metastasis, indicating that the CD169+ macrophage anti-metastatic effects require B cell presence. These results reveal a protective role of CD169+ LN macrophages in breast cancer metastasis and raise caution for the use of drugs aiming at the depletion of tumor-associated macrophages, which might simultaneously deplete macrophages in tumor-draining LNs.


Asunto(s)
Neoplasias Pulmonares/inmunología , Ganglios Linfáticos/inmunología , Macrófagos/inmunología , Glándulas Mamarias Animales/inmunología , Neoplasias Mamarias Experimentales/inmunología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/genética , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Biomarcadores/metabolismo , Proliferación Celular , Femenino , Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ganglios Linfáticos/patología , Metástasis Linfática , Macrófagos/citología , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Monocitos/inmunología , Monocitos/patología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/inmunología , Carga Tumoral
15.
Nat Commun ; 12(1): 925, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568674

RESUMEN

Recent studies have revealed the importance of long noncoding RNAs (lncRNAs) as tissue-specific regulators of gene expression. There is ample evidence that distinct types of vasculature undergo tight transcriptional control to preserve their structure, identity, and functions. We determine a comprehensive map of lineage-specific lncRNAs in human dermal lymphatic and blood vascular endothelial cells (LECs and BECs), combining RNA-Seq and CAGE-Seq. Subsequent antisense oligonucleotide-knockdown transcriptomic profiling of two LEC- and two BEC-specific lncRNAs identifies LETR1 as a critical gatekeeper of the global LEC transcriptome. Deep RNA-DNA, RNA-protein interaction studies, and phenotype rescue analyses reveal that LETR1 is a nuclear trans-acting lncRNA modulating, via key epigenetic factors, the expression of essential target genes, including KLF4 and SEMA3C, governing the growth and migratory ability of LECs. Together, our study provides several lines of evidence supporting the intriguing concept that every cell type expresses precise lncRNA signatures to control lineage-specific regulatory programs.


Asunto(s)
Células Endoteliales/citología , Factores de Transcripción de Tipo Kruppel/metabolismo , Semaforinas/metabolismo , Movimiento Celular , Proliferación Celular , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , ARN Largo no Codificante , Semaforinas/genética
16.
J Invest Dermatol ; 141(2): 415-426, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32598925

RESUMEN

Chronic wounds affect a large percentage of the population worldwide and cause significant morbidity. Unfortunately, efficient compounds for the treatment of chronic wounds are yet not available. Endothelial dysfunction, which is at least in part a result of compromised nitric oxide production and concomitant reduction in cGMP levels, is a major pathologic feature of chronic wounds. Therefore, we designed and synthesized a compound with a unique dual-acting activity (TOP-N53), acting as a nitric oxide donor and phosphodiesterase 5 inhibitor, and applied it locally to full-thickness skin wounds in healthy and healing-impaired mice with diabetes. TOP-N53 promoted keratinocyte proliferation, angiogenesis, and collagen maturation in healthy mice without accelerating the wound inflammatory response or scar formation. Most importantly, it partially rescued the healing impairment of mice with genetically determined type II diabetes (db/db) by stimulating re-epithelialization and granulation tissue formation, including angiogenesis. In vitro studies with human and murine primary cells showed a positive effect of TOP-N53 on keratinocyte and fibroblast migration, keratinocyte proliferation, and endothelial cell migration and tube formation. These results demonstrate a remarkable healing-promoting activity of TOP-N53 by targeting the major resident cells in the wound tissue.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Pie Diabético/tratamiento farmacológico , Donantes de Óxido Nítrico/farmacología , Inhibidores de Fosfodiesterasa 5/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Pie Diabético/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/fisiología , Masculino , Ratones , Ratones Transgénicos , Neovascularización Fisiológica/efectos de los fármacos , Donantes de Óxido Nítrico/uso terapéutico , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Repitelización/efectos de los fármacos
17.
Angiogenesis ; 24(1): 67-82, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32918672

RESUMEN

Lymphatic and blood vascular endothelial cells (ECs) share several molecular and developmental features. However, these two cell types possess distinct phenotypic signatures, reflecting their different biological functions. Despite significant advances in elucidating how the specification of lymphatic and blood vascular ECs is regulated at the transcriptional level during development, the key molecular mechanisms governing their lineage identity under physiological or pathological conditions remain poorly understood. To explore the epigenomic signatures in the maintenance of EC lineage specificity, we compared the transcriptomic landscapes, histone composition (H3K4me3 and H3K27me3) and DNA methylomes of cultured matched human primary dermal lymphatic and blood vascular ECs. Our findings reveal that blood vascular lineage genes manifest a more 'repressed' histone composition in lymphatic ECs, whereas DNA methylation at promoters is less linked to the differential transcriptomes of lymphatic versus blood vascular ECs. Meta-analyses identified two transcriptional regulators, BCL6 and MEF2C, which potentially govern endothelial lineage specificity. Notably, the blood vascular endothelial lineage markers CD34, ESAM and FLT1 and the lymphatic endothelial lineage markers PROX1, PDPN and FLT4 exhibited highly differential epigenetic profiles and responded in distinct manners to epigenetic drug treatments. The perturbation of histone and DNA methylation selectively promoted the expression of blood vascular endothelial markers in lymphatic endothelial cells, but not vice versa. Overall, our study reveals that the fine regulation of lymphatic and blood vascular endothelial transcriptomes is maintained via several epigenetic mechanisms, which are crucial to the maintenance of endothelial cell identity.


Asunto(s)
Células Sanguíneas/citología , Linaje de la Célula/genética , Dermis/citología , Células Endoteliales/citología , Epigénesis Genética , Vasos Linfáticos/citología , Secuencia de Bases , Biomarcadores/metabolismo , Metilación de ADN/genética , Histonas/metabolismo , Humanos , Factores de Transcripción MEF2/metabolismo , Motivos de Nucleótidos/genética , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Transcriptoma/genética
18.
PLoS Biol ; 18(4): e3000704, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32251437

RESUMEN

Lymph nodes (LNs) are highly organized secondary lymphoid organs that mediate adaptive immune responses to antigens delivered via afferent lymphatic vessels. Lymphatic endothelial cells (LECs) line intranodal lymphatic sinuses and organize lymph and antigen distribution. LECs also directly regulate T cells, mediating peripheral tolerance to self-antigens, and play a major role in many diseases, including cancer metastasis. However, little is known about the phenotypic and functional heterogeneity of LN LECs. Using single-cell RNA sequencing, we comprehensively defined the transcriptome of LECs in murine skin-draining LNs and identified new markers and functions of distinct LEC subpopulations. We found that LECs residing in the subcapsular sinus (SCS) have an unanticipated function in scavenging of modified low-density lipoprotein (LDL) and also identified a specific cortical LEC subtype implicated in rapid lymphocyte egress from LNs. Our data provide new, to our knowledge, insights into the diversity of LECs in murine LNs and a rich resource for future studies into the regulation of immune responses by LN LECs.


Asunto(s)
Ganglios Linfáticos/citología , Análisis de la Célula Individual/métodos , Animales , Biomarcadores/metabolismo , Células Endoteliales/citología , Endotelio Linfático/citología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Humanos , Integrina alfa2/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Receptores CCR/genética , Receptores CCR/metabolismo , Análisis de Secuencia de ARN , Proteínas de Transporte Vesicular/genética
19.
Angiogenesis ; 23(3): 411-423, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32307629

RESUMEN

MAFB is a transcription factor involved in the terminal differentiation of several cell types, including macrophages and keratinocytes. MAFB is also expressed in lymphatic endothelial cells (LECs) and is upregulated by VEGF-C/VEGFR-3 signaling. Recent studies have revealed that MAFB regulates several genes involved in lymphatic differentiation and that global Mafb knockout mice show defects in patterning of lymphatic vessels during embryogenesis. However, it has remained unknown whether this effect is LEC-intrinsic and whether MAFB might also be involved in postnatal lymphangiogenesis. We established conditional, lymphatic-specific Mafb knockout mice and found comparable lymphatic patterning defects during embryogenesis as in the global MAFB knockout. Lymphatic MAFB deficiency resulted in increased lymphatic branching in the diaphragm at P7, but had no major effect on lymphatic patterning or function in healthy adult mice. By contrast, tumor-induced lymphangiogenesis was enhanced in mice lacking lymphatic MAFB. Together, these data reveal that LEC-expressed MAFB is involved in lymphatic vascular morphogenesis during embryonic and postnatal development as well as in pathological conditions. Therefore, MAFB could represent a target for therapeutic modulation of lymphangiogenesis.


Asunto(s)
Células Endoteliales/metabolismo , Linfangiogénesis , Vasos Linfáticos/metabolismo , Factor de Transcripción MafB/metabolismo , Animales , Células Endoteliales/patología , Humanos , Vasos Linfáticos/patología , Factor de Transcripción MafB/genética , Ratones , Ratones Noqueados , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
20.
PLoS One ; 14(7): e0219938, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31335913

RESUMEN

Podoplanin (PDPN) is a glycoprotein that is expressed by various cell types, including keratinocytes, fibroblasts, and lymphatic endothelial cells. We found that PDPN is expressed in the hair follicle (HF) keratinocyte region and HF stem cell area during the late anagen phase but not during the telogen phase in mice. Importantly, keratinocyte-specific PDPN deletion in mice (K5-Cre;PDPNflox/flox) promoted anagen HF growth after depilation-induced HF regeneration as compared to control mice. RNA sequencing, followed by gene ontology analysis, showed down-regulation of focal adhesion and extracellular matrix interaction pathways in HF stem cells isolated from K5-Cre;PDPNflox/flox mice as compared to control mice. Furthermore, HF keratinocytes isolated from K5-Cre;PDPNflox/flox mice exhibited a decreased ability to interact with collagen type I in cell adhesion assays. Taken together, these results show that PDPN deletion promotes HF cycling, possibly via reduced focal adhesion and concomitantly enhanced migration of HF stem cells towards the bulb region. They also indicate potential new therapeutic strategies for the treatment of conditions associated with hair loss.


Asunto(s)
Folículo Piloso/crecimiento & desarrollo , Glicoproteínas de Membrana/metabolismo , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Células Madre Adultas/fisiología , Animales , Movimiento Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Femenino , Adhesiones Focales/metabolismo , Folículo Piloso/citología , Folículo Piloso/metabolismo , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Queratinocitos/fisiología , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...