Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(27): 29537-29543, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39005829

RESUMEN

The orientational effect concept in a molecular-scale junction is established for asymmetric junctions, which requires the fulfillment of two conditions: (1) design of an asymmetric molecule with strong distinct terminal end groups and (2) construction of a doubly asymmetric junction by placing an asymmetric molecule in an asymmetric junction to form a multicomponent system such as Au/Zn-TPP+M/Au. Here, we demonstrate that molecular-scale junctions that satisfy the conditions of these effects can manifest Seebeck coefficients whose sign fluctuates depending on the orientation of the molecule within the asymmetric junction in a complete theoretical investigation. Three anthracene-based compounds are investigated in three different scenarios, one of which displays a bithermoelectric behavior due to the presence of strong anchor groups, including pyridyl and thioacetate. This bithermoelectricity demonstration implies that if molecules with alternating orientations can be placed between an asymmetric source and drain, they can be potentially utilized for increasing the thermovoltage in molecular-scale thermoelectric energy generators (TEGs).

2.
Polymers (Basel) ; 16(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38543341

RESUMEN

The optical properties of polyvinylidene fluoride (PVDF) polymer nanocomposite films incorporating SrTiO3/carbon nanotubes (CNTs) as nanofillers are investigated. PVDF/SrTiO3/CNTs films were prepared by the solution casting technique. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) analyses confirmed the incorporation of SrTiO3/CNTs into the PVDF matrix. The addition of nanofillers influenced the crystalline structure, morphology, and optical properties of the films. SEM images showed spherulite morphology, which is a spherical aggregate of crystalline polymer chains. The addition of a SrTiO3/CNTs nanofiller modified the polymer's electronic structure, causing a variation in the energy gap. The addition of SrTiO3/CNTs at 0.1 wt% increased the band gap, refractive index, and nonlinear optical properties of the PVDF films. These improvements indicate the potential of these nanocomposite films in optoelectronic applications such as solar cells, image sensors, and organic light-emitting diodes.

3.
Nanomaterials (Basel) ; 14(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38392706

RESUMEN

This study aims to prepare new nanocomposites consisting of Cr2O3/CaCO3 as a catalyst for improved hydrogen production from NaBH4 methanolysis. The new nanocomposite possesses nanoparticles with the compositional formula Cr2-xCaxO3 (x = 0, 0.3, and 0.6). These samples were prepared using the sol-gel method, which comprises gelatin fuel. The structure of the new composites was studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, environmental scanning electron microscopy (ESEM), and X-ray spectroscopy (XPS). The XRD data showed the rhombohedral crystallinity of the studied samples, and the average crystal size was 25 nm. The FTIR measurements represented the absorption bands of Cr2O3 and CaO. The ESEM micrographs of the Cr2O3 showed the spherical shape of the Cr2O3 nanoparticles. The XPS measurements proved the desired oxidation states of the Cr2-xCaxO3 nanoparticles. The optical band gap of Cr2O3 is 3.0 eV, and calcium doping causes a reduction to 2.5 and 1.3 eV at 15.0 and 30.0% doping ratios. The methanolysis of NaBH4 involved accelerated H2 production when using Cr2-xCaxO3 as a catalyst. Furthermore, the Cr1.7Ca0.3O3 catalyst had the highest hydrogen generation rate, with a value of 12,750 mL/g/min.

4.
Biomimetics (Basel) ; 8(7)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37999188

RESUMEN

This study aimed to explore the effects of the full-scale replacement (up to 100%) of Ca2+ ions with Ag1+ ions in the structure of brushite (CaHPO4·2H2O). This substitution has potential benefits for producing monophasic and biphasic Ca1-xAgxHPO4·nH2O compounds. To prepare the starting solutions, (NH4)2HPO4, Ca(NO3)2·4H2O, and AgNO3 at different concentrations were used. The results showed that when the Ag/Ca molar ratio was below 0.25, partial substitution of Ca with Ag reduced the size of the unit cell of brushite. As the Ag/Ca molar ratio increased to 4, a compound with both monoclinic CaHPO4·2H2O and cubic nanostructured Ag3PO4 phases formed. There was a nearly linear relationship between the Ag ion ratio in the starting solutions and the wt% precipitation of the Ag3PO4 phase in the resulting compound. Moreover, when the Ag/Ca molar ratio exceeded 4, a single-phase Ag3PO4 compound formed. Hence, adjusting the Ag/Ca ratio in the starting solution allows the production of biomaterials with customized properties. In summary, this study introduces a novel synthesis method for the mono- and biphasic Ca1-xAgxHPO4·nH2O compounds brushite and silver phosphate. The preparation of these phases in a one-pot synthesis with controlled phase composition resulted in the enhancement of existing bone cement formulations by allowing better mixing of the starting ingredients.

5.
Materials (Basel) ; 16(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37374402

RESUMEN

In this work, the S@g-C3N4 and CuS@g-C3N4 catalysts were prepared via the polycondensation process. The structural properties of these samples were completed on XRD, FTIR and ESEM techniques. The XRD pattern of S@g-C3N4 presents a sharp peak at 27.2° and a weak peak at 13.01° and the reflections of CuS belong to the hexagonal phase. The interplanar distance decreased from 0.328 to 0.319 nm that facilitate charge carrier separation and promoting H2 generation. FTIR data revealed the structural change according to absorption bands of g-C3N4. ESEM images of S@g-C3N4 exhibited the described layered sheet structure for g-C3N4 materials and CuS@g-C3N4 demonstrated that the sheet materials were fragmented throughout the growth process. The data of BET revealed a higher surface area (55 m2/g) for the CuS-g-C3N4 nanosheet. The UV-vis absorption spectrum of S@g-C3N4 showed a strong peak at 322 nm, which weakened after the growth of CuS at g-C3N4. The PL emission data showed a peak at 441 nm, which correlated with electron-hole pair recombination. The data of hydrogen evolution showed improved performance for the CuS@g-C3N4 catalyst (5227 mL/g·min). Moreover, the activation energy was determined for S@g-C3N4 and CuS@g-C3N4, which showed a lowering from 47.33 ± 0.02 to 41.15 ± 0.02 KJ/mol.

6.
Polymers (Basel) ; 15(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37177378

RESUMEN

In this work, a synthesis technique for highly homogeneous PVDF-CaFe2O4 polymer films direct from solution was developed. The structural characterizations were conducted using XRD, FTIR, and ESEM experimental techniques. The XRD characteristic peaks of CaFe2O4 nanoparticles revealed a polycrystalline structure. The average crystallite size for CaFe2O4 was calculated to be 17.0 nm. ESEM micrographs of PVDF nanocomposites containing 0.0, 0.25, 0.75, and 1.0 wt% of CaFe2O4 showed smooth surface topography. The direct Edir and indirect Eind band gap energies for the PVDF-CaFe2O4 nanocomposites were decreased with the additions of 0.0-1.0 wt% CaFe2O4. In addition, the refractive index (n0) increased from 3.38 to 10.36, and energy gaps (Eg) decreased from 5.50 to 4.95 eV. The nonlinear refractive index (n2) for the PVDF-CaFe2O4 nanocomposites was improved with the addition of CaFe2O4 nanoparticles, exceeding those reported in the literature for PVC, PVA, and PMMA nanocomposites. Therefore, the PVDF-CaFe2O4 nanocomposites are expected to take the lead in optoelectronic applications because of their unusual optical properties.

7.
Nanomaterials (Basel) ; 13(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36903698

RESUMEN

Hydrogen production as a source of clean energy is high in demand nowadays to avoid environmental issues originating from the use of conventional energy sources i.e., fossil fuels. In this work and for the first time, MoO3/S@g-C3N4 nanocomposite is functionalized for hydrogen production. Sulfur@graphitic carbon nitride (S@g-C3N4)-based catalysis is prepared via thermal condensation of thiourea. The MoO3, S@g-C3N4, and MoO3/S@g-C3N4 nanocomposites were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Field Emission Scanning Electron Microscope (FESEM), STEM, and spectrophotometer. The lattice constant (a = 3.96, b = 13.92 Å) and the volume (203.4 Å3) of MoO3/10%S@g-C3N4 were found to be the highest compared with MoO3, MoO3/20-%S@g-C3N4, and MoO3/30%S@g-C3N4, and that led to highest band gap energy of 4.14 eV. The nanocomposite sample MoO3/10%S@g-C3N4 showed a higher surface area (22 m2/g) and large pore volume (0.11 cm3/g). The average nanocrystal size and microstrain for MoO3/10%S@g-C3N4 were found to be 23 nm and -0.042, respectively. The highest hydrogen production from NaBH4 hydrolysis ~22,340 mL/g·min was obtained from MoO3/10%S@g-C3N4 nanocomposites, while 18,421 mL/g·min was obtained from pure MoO3. Hydrogen production was increased when increasing the masses of MoO3/10%S@g-C3N4.

8.
Nanomaterials (Basel) ; 13(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36903816

RESUMEN

The nanocomposites of S@g-C3N4 and NiS-g-C3N4 were synthesized for catalytic hydrogen production from the methanolysis of sodium borohydride (NaBH4). Several experimental methods were applied to characterize these nanocomposites such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and environmental scanning electron microscopy (ESEM). The calculation of NiS crystallites revealed an average size of 8.0 nm. The ESEM and TEM images of S@g-C3N4 showed a 2D sheet structure and NiS-g-C3N4 nanocomposites showed the sheet materials that were broken up during the growth process, revealing more edge sites. The surface areas were 40, 50, 62, and 90 m2/g for S@g-C3N4, 0.5 wt.% NiS, 1.0 wt.% NiS, and 1.5 wt.% NiS, respectively. The pore volume of S@g-C3N4 was 0.18 cm3, which was reduced to 0.11 cm3 in 1.5 wt.% NiS owing to the incorporation of NiS particles into the nanosheet. We found that the in situ polycondensation preparation of S@g-C3N4 and NiS-g-C3N4 nanocomposites increased the porosity of the composites. The average values of the optical energy gap for S@g-C3N4 were 2.60 eV and decreased to 2.50, 2.40, and 2.30 eV as the NiS concentration increased from 0.5 to 1.5 wt.%. All NiS-g-C3N4 nanocomposite catalysts had an emission band that was visible in the 410-540 nm range and the intensity of this peak decreased as the NiS concentration increased from 0.5 to 1.5 wt.%. The hydrogen generation rates increased with increasing content of NiS nanosheet. Moreover, the sample 1.5 wt.% NiS showed the highest production rate of 8654 mL/g·min due to the homogeneous surface organization.

9.
Polymers (Basel) ; 15(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36771984

RESUMEN

Polymer blend hybrid nanocomposites are of great importance for future optoelectronic applications. This paper presents the preparation of new polymer blend hybrid nanocomposites based on PVC/PVP modified with Er2O3 nanoparticles. A low-cost solution casting method has been used to prepare the polymer nanocomposites at 0.0, 0.1, 0.3 and 0.6 wt% of Er2O3. X-ray diffraction (XRD), Fourier transform infrared (FTIR), Raman spectroscopy, and environmental scanning electron microscopy (ESEM) measurements have all been used to examine the impact of a varying wt% of Er2O3 on the structural and optical characteristics of PVP/PVC polymer blends. The PVC/PVP polymer blend and Er2O3 nanoparticles showed a strong interaction, which was validated by XRD, FTIR, and Raman spectrum investigations. The SEM micrographs showed a remarkable complexation among the components of the polymer nanocomposites. The activation energies for thermal decomposition of PVC/PVP doped with different Er2O3 concentrations were less than that of the pure polymer film. The linear and nonlinear refractive indexes, dispersion energy, optical susceptibility and the energy gap values were found to be Er2O3 concentration-dependent. With an increase in Er2O3 concentration to 0.1 and 0.3 wt%, the dispersion energy and nonlinear refractive index improved, and thereafter decreased when the concentration was further increased to 0.6For the film doped with 0.1 wt% Er2O3, the optical band gap (Eopt) of the composite film enhanced by about 13%. The optical absorption measurements revealed clear improvements with the addition of erbium oxide. Higher refractive index values of PVC/PVP/Er2O3 films qualify the polymer blend as a cladding for electro-optic modulators. Our results indicated that the PVC/PVP/Er2O3 polymer films could be suitable for optoelectronic space applications.

10.
Polymers (Basel) ; 15(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36850153

RESUMEN

The present work considers the integration of g-C3N4 nanosheets into PVC/PVP polymer nanocomposites at ratios of 0.0, 0.3, 0.6, and 1.0 wt%. The XRD data scans showed semicrystalline structures for all PVC/PVP/g-C3N4 polymer blend films. The FTIR and Raman measurements revealed intermolecular hydrogen bonding between the g-C3N4 surface and the OH- groups of the PVC/PVP network. ESEM morphology analysis for PVC/PVP/g-C3N4 nanocomposite films displayed homogeneous surface textures. The data of TGA showed improved thermal stability as the decomposition temperature increased from 262 to 276 °C with the content of g-C3N4 (0.0-1.0 wt%). The optical absorbance data for PVC/PVP films improved after the addition of g-C3N4. The optical energy gaps showed compositional dependence on the g-C3N4 content, which changed from 5.23 to 5.34 eV at indirect allowed transitions. The refractive index for these blend films enhanced (1.83-3.96) with the inclusion of g-C3N4. Moreover, the optical susceptibility for these nanocomposite films increased as the content of g-C3N4 changed from 0.0 to 1.0 wt%. Finally, the values of the nonlinear refractive index showed improvement with the increased percentage of g-C3N4. When g-C3N4 was added up to 1.0 wt%, the DC conductivity improved from 4.21 × 10-8 to 1.78 × 10-6 S/cm. The outcomes of this study prove the suitable application of PVC/PVP/g-C3N4 in optoelectronic fiber sensors.

11.
Nanomaterials (Basel) ; 11(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34947595

RESUMEN

Light-driven heterogeneous photocatalysis has gained great significance for generating solar fuel; the challenging charge separation process and sluggish surface catalytic reactions significantly restrict the progress of solar energy conversion using a semiconductor photocatalyst. Herein, we propose a novel and feasible strategy to incorporate dihydroxy benzene (DHB) as a conjugated monomer within the framework of urea containing CN (CNU-DHBx) to tune the electronic conductivity and charge separation due to the aromaticity of the benzene ring, which acts as an electron-donating species. Systematic characterizations such as SPV, PL, XPS, DRS, and TRPL demonstrated that the incorporation of the DHB monomer greatly enhanced the photocatalytic CO2 reduction of CN due to the enhanced charge separation and modulation of the ionic mobility. The significantly enhanced photocatalytic activity of CNU-DHB15.0 in comparison with parental CN was 85 µmol/h for CO and 19.92 µmol/h of the H2 source. It can be attributed to the electron-hole pair separation and enhance the optical adsorption due to the presence of DHB. Furthermore, this remarkable modification affected the chemical composition, bandgap, and surface area, encouraging the controlled detachment of light-produced photons and making it the ideal choice for CO2 photoreduction. Our research findings potentially offer a solution for tuning complex charge separation and catalytic reactions in photocatalysis that could practically lead to the generation of artificial photocatalysts for efficient solar energy into chemical energy conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...