Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 13(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37189563

RESUMEN

The need for a lightweight and reliable segmentation algorithm is critical in various biomedical image-prediction applications. However, the limited quantity of data presents a significant challenge for image segmentation. Additionally, low image quality negatively impacts the efficiency of segmentation, and previous deep learning models for image segmentation require large parameters with hundreds of millions of computations, resulting in high costs and processing times. In this study, we introduce a new lightweight segmentation model, the mobile anti-aliasing attention u-net model (MAAU), which features both encoder and decoder paths. The encoder incorporates an anti-aliasing layer and convolutional blocks to reduce the spatial resolution of input images while avoiding shift equivariance. The decoder uses an attention block and decoder module to capture prominent features in each channel. To address data-related problems, we implemented data augmentation methods such as flip, rotation, shear, translate, and color distortions, which enhanced segmentation efficiency in the international Skin Image Collaboration (ISIC) 2018 and PH2 datasets. Our experimental results demonstrated that our approach had fewer parameters, only 4.2 million, while it outperformed various state-of-the-art segmentation methods.

2.
Sensors (Basel) ; 23(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36991703

RESUMEN

An electrocardiogram (ECG) is a basic and quick test for evaluating cardiac disorders and is crucial for remote patient monitoring equipment. An accurate ECG signal classification is critical for real-time measurement, analysis, archiving, and transmission of clinical data. Numerous studies have focused on accurate heartbeat classification, and deep neural networks have been suggested for better accuracy and simplicity. We investigated a new model for ECG heartbeat classification and found that it surpasses state-of-the-art models, achieving remarkable accuracy scores of 98.5% on the Physionet MIT-BIH dataset and 98.28% on the PTB database. Furthermore, our model achieves an impressive F1-score of approximately 86.71%, outperforming other models, such as MINA, CRNN, and EXpertRF on the PhysioNet Challenge 2017 dataset.


Asunto(s)
Arritmias Cardíacas , Infarto del Miocardio , Electrocardiografía , Frecuencia Cardíaca , Arritmias Cardíacas/fisiopatología , Infarto del Miocardio/fisiopatología , Humanos , Aprendizaje Automático
3.
J Supercomput ; 79(3): 2767-2782, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36035635

RESUMEN

Metaverse, which is anticipated to be the future of the internet, is a 3D virtual world in which users interact via highly customizable computer avatars. It is considerably promising for several industries, including gaming, education, and business. However, it still has drawbacks, particularly in the privacy and identity threads. When a person joins the metaverse via a virtual reality (VR) human-robot equipment, their avatar, digital assets, and private information may be compromised by cybercriminals. This paper introduces a specific Finger Vein Recognition approach for the virtual reality (VR) human-robot equipment of the metaverse of the Metaverse to prevent others from misappropriating it. Finger vein is a is a biometric feature hidden beneath our skin. It is considerably more secure in person verification than other hand-based biometric characteristics such as finger print and palm print since it is difficult to imitate. Most conventional finger vein recognition systems that use hand-crafted features are ineffective, especially for images with low quality, low contrast, scale variation, translation, and rotation. Deep learning methods have been demonstrated to be more successful than traditional methods in computer vision. This paper develops a finger vein recognition system based on a convolution neural network and anti-aliasing technique. We employ/ utilize a contrast image enhancement algorithm in the preprocessing step to improve performance of the system. The proposed approach is evaluated on three publicly available finger vein datasets. Experimental results show that our proposed method outperforms the current state-of-the-art methods, improvement of 97.66% accuracy on FVUSM dataset, 99.94% accuracy on SDUMLA dataset, and 88.19% accuracy on THUFV2 dataset.

4.
IEEE Trans Cybern ; 52(5): 3684-3695, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-32936758

RESUMEN

Music information retrieval is of great interest in audio signal processing. However, relatively little attention has been paid to the playing techniques of musical instruments. This work proposes an automatic system for classifying guitar playing techniques (GPTs). Automatic classification for GPTs is challenging because some playing techniques differ only slightly from others. This work presents a new framework for GPT classification: it uses a new feature extraction method based on spectral-temporal receptive fields (STRFs) to extract features from guitar sounds. This work applies a supervised deep learning approach to classify GPTs. Specifically, a new deep learning model, called the hierarchical cascade deep belief network (HCDBN), is proposed to perform automatic GPT classification. Several simulations were performed and the datasets of: 1) data on onsets of signals; 2) complete audio signals; and 3) audio signals in a real-world environment are adopted to compare the performance. The proposed system improves upon the F-score by approximately 11.47% in setup 1) and yields an F-score of 96.82% in setup 2). The results in setup 3) demonstrate that the proposed system also works well in a real-world environment. These results show that the proposed system is robust and has very high accuracy in automatic GPT classification.


Asunto(s)
Música , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA