Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(2): e0281233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36757926

RESUMEN

In Saccharomyces cerevisiae, class II gene promoters have been divided into two subclasses, TFIID- and SAGA-dominated promoters or TFIID-dependent and coactivator-redundant promoters, depending on the experimental methods used to measure mRNA levels. A prior study demonstrated that Spt3, a TBP-delivering subunit of SAGA, functionally regulates the PGK1 promoter via two mechanisms: by stimulating TATA box-dependent transcriptional activity and conferring Taf1/TFIID independence. However, only the former could be restored by plasmid-borne SPT3. In the present study, we sought to determine why ectopically expressed SPT3 is unable to restore Taf1/TFIID independence to the PGK1 promoter, identifying that this function was dependent on the construction protocol for the SPT3 taf1 strain. Specifically, simultaneous functional loss of Spt3 and Taf1 during strain construction was a prerequisite to render the PGK1 promoter Taf1/TFIID-dependent in this strain. Intriguingly, genetic approaches revealed that an as-yet unidentified trans-acting factor reprogrammed the transcriptional mode of the PGK1 promoter from the Taf1/TFIID-independent state to the Taf1/TFIID-dependent state. This factor was generated in the haploid SPT3 taf1 strain in an Hsp104-dependent manner and inherited meiotically in a non-Mendelian fashion. Furthermore, RNA-seq analyses demonstrated that this factor likely affects the transcription mode of not only the PGK1 promoter, but also of many other class II gene promoters. Collectively, these findings suggest that a prion or biomolecular condensate is generated in a Hsp104-dependent manner upon simultaneous functional loss of TFIID and SAGA, and could alter the roles of these transcription complexes on a wide variety of class II gene promoters without altering their primary sequences. Therefore, these findings could provide the first evidence that TFIID dependence of class II gene transcription can be altered epigenetically, at least in Saccharomyces cerevisiae.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Factores Asociados con la Proteína de Unión a TATA , Factor de Transcripción TFIID/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , ARN Mensajero/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Proteína de Unión a TATA-Box/genética , Proteínas de Choque Térmico/genética , Factores de Transcripción/genética
2.
Genes Genet Syst ; 95(3): 151-163, 2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32624556

RESUMEN

In Saccharomyces cerevisiae, class II gene promoters contain two classes of TATA elements: the TATA box and the TATA-like element. Functional loss of TFIID and SAGA transcription complexes selectively impacts steady-state mRNA levels expressed from TATA-like element-containing (i.e., TATA-less) and TATA box-containing promoters, respectively. While nascent RNA analysis has revealed that TFIID and SAGA are required for both types of promoters, the division of their roles remains unclear. We show here that transcription from the PGK1 promoter decreased in some cases by more than half after disruption of the TATA box or SPT3 (spt3Δ), whereas spt3Δ did not affect transcription from the TATA-less promoter, consistent with the prevailing view that Spt3 functions specifically in a TATA box-dependent manner. Transcription from this promoter was abolished in the spt3Δ taf1-N568Δ strain but unaffected in the taf1-N568Δ strain, regardless of TATA box presence, suggesting that TFIID was functionally dispensable for PGK1 transcription at least in the SPT3 strain. Furthermore, transcription from the TATA box-containing PGK1 promoter was slightly reduced in the taf1 strain lacking TAND (taf1-ΔTAND) upon temperature shift from 25 to 37 ℃, with restoration to normal levels within 2 h, in an Spt3-dependent manner. Interestingly, when SPT3 was reintroduced into the spt3Δ TAF1, spt3Δ taf1-N568Δ or spt3Δ taf1-ΔTAND strain, TATA box-dependent transcription from this promoter was largely restored, but TFIID independence in transcription was not restored, especially from the TATA-less promoter, and transient TAND/Spt3-dependent fluctuations of transcription after the temperature shift were also not recapitulated. Collectively, these observations suggest that Spt3 has multiple functions in PGK1 transcription, some of which may be intimately connected to Taf1 function and may therefore become unrestorable when the TFIID and SAGA functions are simultaneously compromised.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Mutación , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , TATA Box , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/genética , Activación Transcripcional
3.
J Biol Chem ; 287(31): 26321-7, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22665493

RESUMEN

The circadian clock of cyanobacteria is composed of KaiA, KaiB, and KaiC proteins, and the SasA-RpaA two-component system has been implicated in the regulation of one of the output pathways of the clock. In this study, we show that another response regulator that is essential for viability, the RpaA paralog, RpaB, plays a central role in the transcriptional oscillation of clock-regulated genes. In vivo and in vitro analyses revealed that RpaB and not RpaA could specifically bind to the kaiBC promoter, possibly repressing transcription during subjective night. This suggested that binding may be terminated by RpaA to activate gene transcription during subjective day. Moreover, we found that rpoD6 and sigF2, which encode group-2 and group-3 σ factors for RNA polymerase, respectively, were also targets of the RpaAB system, suggesting that a specific group of σ factors can propagate genome-wide transcriptional oscillation. Our findings thus reveal a novel mechanism for a circadian output pathway that is mediated by two paralogous response regulators.


Asunto(s)
Proteínas Bacterianas/química , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Synechococcus/fisiología , Factores de Transcripción/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Inmunoprecipitación de Cromatina , Relojes Circadianos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/fisiología , Ensayo de Cambio de Movilidad Electroforética , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Regiones Promotoras Genéticas , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa , Synechococcus/genética , Synechococcus/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Transcripción Genética
4.
Proc Natl Acad Sci U S A ; 107(7): 3263-8, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133618

RESUMEN

Circadian kaiBC expression in the cyanobacterium Synechococcus elongatus PCC 7942 is generated by temporal information transmission from the KaiABC-based circadian oscillator to RpaA, a putative transcriptional factor, via the SasA-dependent positive pathway and the LabA-dependent negative pathway which is responsible for feedback regulation of KaiC. However, the labA/sasA double mutant has a circadian kaiBC expression rhythm, suggesting that there is an additional circadian output pathway. Here we describe a third circadian output pathway, which is CikA-dependent. The cikA mutation attenuates KaiC overexpression-induced kaiBC repression and exacerbates the low-amplitude phenotype of the labA mutant, suggesting that cikA acts as a negative regulator of kaiBC expression independent of the LabA-dependent pathway. In the labA/sasA/cikA triple mutant, kaiBC promoter activity becomes almost arrhythmic, despite preservation of the circadian KaiC phosphorylation rhythm, suggesting that CikA largely accounts for the residual kaiBC expression rhythm observed in the labA/sasA double mutant. These results also strongly suggest that transcriptional regulation in the labA/sasA/cikA triple mutant is insulated from the circadian signals of the KaiABC-based oscillator. Based on these observations, we propose a model in which temporal information from the KaiABC-based circadian oscillator is transmitted to gene expression through three separate output pathways.


Asunto(s)
Proteínas Bacterianas/metabolismo , Relojes Biológicos/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Ritmo Circadiano/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Synechococcus/fisiología , Ritmo Circadiano/genética , Immunoblotting , Modelos Biológicos , Mutagénesis , Synechococcus/genética
5.
Genes Dev ; 21(1): 60-70, 2007 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17210789

RESUMEN

In the cyanobacterium Synechococcus elongatus PCC 7942, circadian timing is transmitted from the KaiABC-based central oscillator to the transcription factor RpaA via the KaiC-interacting histidine kinase SasA to activate transcription, thereby generating rhythmic circadian gene expression. However, KaiC can also repress circadian gene expression, including its own. The mechanism and significance of this negative feedback regulation have been unclear. Here, we report a novel gene, labA (low-amplitude and bright), that is required for negative feedback regulation of KaiC. Disruption of labA abolished transcriptional repression caused by overexpression of KaiC and elevated the trough levels of circadian gene expression, resulting in a low-amplitude phenotype. In contrast, overexpression of labA significantly lowered circadian gene expression. Furthermore, genetic analysis indicated that labA and sasA function in parallel pathways to regulate kaiBC expression, whereas rpaA functions downstream from labA for kaiBC expression. These results suggest that temporal information from the KaiABC-based oscillator diverges into a LabA-dependent negative pathway and a SasA-dependent positive pathway, and then converges onto RpaA to generate robust circadian gene expression. It is likely that quantitative information of KaiC is transmitted to RpaA through LabA, whereas SasA mediates the state of the KaiABC-based oscillator.


Asunto(s)
Proteínas Bacterianas/fisiología , Relojes Biológicos/genética , Ritmo Circadiano/fisiología , Retroalimentación Fisiológica/fisiología , Regulación Bacteriana de la Expresión Génica , Synechococcus/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Northern Blotting , Western Blotting , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Datos de Secuencia Molecular , Mutagénesis , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras , Homología de Secuencia de Aminoácido , Transcripción Genética
6.
Proc Natl Acad Sci U S A ; 103(32): 12109-14, 2006 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-16882723

RESUMEN

KaiA, KaiB, and KaiC clock proteins from cyanobacteria and ATP are sufficient to reconstitute the KaiC phosphorylation rhythm in vitro, whereas almost all gene promoters are under the control of the circadian clock. The mechanism by which the KaiC phosphorylation cycle drives global transcription rhythms is unknown. Here, we report that RpaA, a potential DNA-binding protein that acts as a cognate response regulator of the KaiC-interacting kinase SasA, mediates between KaiC phosphorylation and global transcription rhythms. Circadian transcription was severely attenuated in sasA (Synechococcus adaptive sensor A)- and rpaA (regulator of phycobilisome-associated)-mutant cells, and the phosphotransfer activity from SasA to RpaA changed dramatically depending on the circadian state of a coexisting Kai protein complex in vitro. We propose a model in which the SasA-RpaA two-component system mediates time signals from the enzymatic oscillator to drive genome-wide transcription rhythms in cyanobacteria. Moreover, our results indicate the presence of secondary output pathways from the clock to transcription control, suggesting that multiple pathways ensure a genome-wide circadian system.


Asunto(s)
Proteínas Bacterianas/fisiología , Cianobacterias/fisiología , Regulación Bacteriana de la Expresión Génica , Fosfotransferasas/fisiología , Proteínas Bacterianas/química , Relojes Biológicos , Ritmo Circadiano , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Eliminación de Gen , Luz , Modelos Biológicos , Oscilometría , Fosforilación , Plásmidos/metabolismo , Regiones Promotoras Genéticas
7.
J Biol Rhythms ; 21(4): 235-44, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16864644

RESUMEN

The time measurement system of the unicellular cyanobacterium Synechococcus elongatus PCC 7942 is analogous to the circadian clock of eukaryotic cells. Circadian clock-related genes have been identified in this strain. The clock-related gene pex is thought to maintain the normal clock period because constitutive transcription or deficiency of this gene causes respectively longer (approximately 28 h) or shorter (approximately 24 h) circadian periods than that of the wild type (approximately 25 h). Here, the authors report other properties of pex in the circadian system. Levels of pex mRNA increased significantly in a 12-h exposure to darkness. Western blotting with a GST-Pex antibody revealed a 13.5-kDa protein band in wild-type cells that were incubated in the dark, while this protein was not detected in pex-deficient mutant cells. Therefore, the molecular weight of the Pex protein appears to be 13.5 kDa in vivo. The PadR domain, which is conserved among DNA-binding transcription factors in lactobacilli, was found in Pex. In the pex mutant, several 12-h light/12-h dark cycles reset the phase of the clock by 3 h earlier (phase advance) compared to wild-type cells. The degree of the advance in the pex mutant was proportional to the number of exposed light-dark cycles. In addition, ectopic induction of pex with an inducible Escherichia coli promoter, Ptrc, delayed the phase in the examined recombinant cells by 2.5 h (phase delay) compared to control cells. These results suggest that the dark-responsive gene expression of pex delays the circadian clock under daily light-dark cycles.


Asunto(s)
Proteínas Bacterianas/genética , Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Oscuridad , Synechococcus/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Peso Molecular , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Synechococcus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...