Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(33): 22223-22231, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37566434

RESUMEN

A broadband dielectric spectroscopy study was conducted on a partially crystallized 10 wt% poly(N-isopropylacrylamide) [PNIPAM] microgel aqueous suspension to investigate the dielectric relaxation of ice in microgel suspensions. The measurements covered a frequency range of 10 mHz to 10 MHz and at temperatures ranging from 123 K to 273 K. Two distinct relaxation processes were observed at specific frequencies below the melting temperature. One is associated with the combination of the local chain motion of PNIPAM and interfacial polarization in the uncrystallized phase, while another is associated with ice. To understand the temperature-dependent behaviour of the ice relaxation process, the relaxation time of ice was compared with those observed in other frozen polymer water mixtures, including gelatin, poly-vinylpyrrolidone (PVP), and bovine serum albumin (BSA). For concentrations ≥ 10 wt%, the temperature dependence of the relaxation time of ice was found to be independent. Therefore, the study primarily focused on the 10 wt% data for easier comprehension of the ice relaxation process. It was found that the microgel and globular protein BSA had no significant effect on ice crystallization, while gelatin slowed down the crystallization process, and PVP accelerated it. To discuss the mechanism of the dielectric relaxation of ice, the trap-controlled proton transport model developed by Khamzin et al. [Chem. Phys., 2021, 541, 111040.] was employed. The model was used to discuss the dynamic heterogeneity of ice observed in this investigation, distinguishing it from the spatial heterogeneity of ice commonly discussed.

2.
J Colloid Interface Sci ; 608(Pt 2): 2018-2024, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34749149

RESUMEN

HYPOTHESIS: The coil-to-globule transition is an essential phenomenon in protein and polymer solutions. Late stages of such transitions, >1 µs, have been thoroughly studied. Yet, the initial ones are a matter of speculations. Here, we present the first observation of a sub-nanosecond stage of the coil-to-globule transition of poly (vinyl methyl ether), PVME, in water. EXPERIMENTS: The detection of an early stage of the coil-to-globule transition has been possible thanks to a novel experimental approach - time-resolved elastic light scattering study, following an ultrafast temperature jump. We identified a molecular process active in the observed stage of the transition with use of broadband dielectric spectroscopy. FINDINGS: In the experiment's time window, from a few ps to around 600 ps, we observed an increase in the light scattering intensity 300-400 ps after the temperature jump that heated the sample above its lower critical solution temperature (LCST). The observed time coincides with the time of segmental relaxation of PVME, determined by broadband dielectric spectroscopy in the temperature range of the LCST of the PVME/water mixture. This coincidence strongly suggests that the observed herein stage of coil-to-globule transition is the rapid formation of local nuclei along the polymer chain. Those nuclei may grow and aggregate in later stages of the process, which are out of our experimental time window.


Asunto(s)
Resinas Acrílicas , Agua , Polímeros , Temperatura
3.
PLoS One ; 16(6): e0252589, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34077459

RESUMEN

Electrical stimulation is one of the candidates for elongation-driven regeneration of damaged peripheral nerves. Different organs and tissues have an inherent cell structure and size. This leads to variation in the tissue-specific electrical properties of the frequency of interfacial polarization. Although nervous tissues have a membrane potential, the electrical reaction inside these tissues following electrical stimulation from outside remains unexplored. Furthermore, the pathophysiological reaction of an injured nerve is unclear. Here, we investigated the electrical reaction of injured and non-injured rat sciatic nerves via broadband dielectric spectroscopy. Crush injured and non-injured sciatic nerves of six 12-week-old male Lewis rats were used, 6 days after infliction of the injury. Both sides of the nerves (with and without injury) were exposed, and impedance measurements were performed at room temperature (approximately 25°C) at frequencies ranging from 100 mHz to 5.5 MHz and electric potential ranging from 0.100 to 1.00 V. The measured interfacial polarization potentially originated from the polarization by ion transport around nerve membranes at frequencies between 3.2 kHz and 1.6 MHz. The polarization strength of the injured nerves was smaller than that of non-injured nerves. However, the difference in polarization between injured and non-injured nerves might be caused by inflammation and edema. The suitable frequency range of the interfacial polarization can be expected to be critical for electrical stimulation of injured peripheral nerves.


Asunto(s)
Lesiones por Aplastamiento/fisiopatología , Espectroscopía Dieléctrica/métodos , Nervio Ciático/lesiones , Animales , Modelos Animales de Enfermedad , Estimulación Eléctrica , Electrónica Médica , Masculino , Compresión Nerviosa , Regeneración Nerviosa , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA