RESUMEN
Hepatitis E virus (HEV) is the major causative agent of hepatitis E or what was formerly known as enterically transmitted non-A, non-B hepatitis. The disease has a worldwide distribution but occurs principally in developing countries in any of three forms: large epidemics, smaller outbreaks, or sporadic infections. Genetic variation of different HEV strains was previously noted and it will be important to determine the extent to which this variation may pose problems in the diagnosis and treatment of HEV infection. To analyze differences at the genetic level between HEV(Mexico; M) and the previously characterized HEV(Burma; B) and HEV(Pakistan; P) isolates, overlapping cDNAs were cloned from samples obtained from an infected human and an experimentally inoculated cynomolgus macaque. These cDNA clones, representing the nearly complete (7185-bp) genome of HEV(M), confirmed an expression strategy for the virus that involves the use of 3 forward open reading frames (ORFs). The HEV(M) strain has an overall 76 and 77% nucleic acid identity with the HEV(B) strain and HEV(P) strain, respectively; however, the degree of sequence variation was not uniform throughout the viral genome. A hypervariable region was identified in ORF1 that exhibited a 58 and 54% nucleic acid sequence and 13% amino acid similarity with the Burma strain and the Pakistan strain, respectively. A large number of the nucleotide differences occurred at the third codon position, with the deduced amino acid sequences similarity of 83, 93, and 87% between HEV(M) and HEV(B) isolates in ORF1, ORF2, and ORF3, respectively, and with 84, 93, and 87% amino acid identities between HEV(M) and HEV(P) isolates in ORF1, ORF2, and ORF3, respectively. The nucleotide sequences derived from the highly conserved regions of HEV genome will be useful in developing polymerase chain reaction-based tests to confirm the viral infection. Knowledge of the extent of the sequence variation encountered with HEV will not only aid in the future development of diagnostic and vaccine reagents but also further our understanding of how HEV strain variation might impact the pathological outcome of infection.
Asunto(s)
Virus de la Hepatitis E/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Regulación Viral de la Expresión Génica , Variación Genética , Genoma Viral , Virus de la Hepatitis E/clasificación , Humanos , Macaca fascicularis , México/epidemiología , Datos de Secuencia Molecular , Mianmar/epidemiología , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta/genética , Pakistán/epidemiología , Homología de Secuencia de AminoácidoRESUMEN
Ninety-nine preterm infants with birth weights < 1750 gm had three doses of hepatitis B vaccine. Fifty-seven received the first dose when they weighed > or = 1000 gm (group 1) and 42 when they weighed > or = 2000 gm (group 2). The final seropositive rates and geometric mean titers of group 1 infants (79%, 61 mIU/ml) and group 2 infants (91%, 262 mIU/ml) were less than that of 43 normal term infants (100%, 679 mIU/ml).