Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Nature ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143218

RESUMEN

Transthiolation (also known as transthioesterification) reactions are used in the biosynthesis of acetyl coenzyme A, fatty acids and polyketides, and for post-translational modification by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins1-3. For the Ub pathway, E1 enzymes catalyse transthiolation from an E1~Ub thioester to an E2~Ub thioester. Transthiolation is also required for transfer of Ub from an E2~Ub thioester to HECT (homologous to E6AP C terminus) and RBR (ring-between-ring) E3 ligases to form E3~Ub thioesters4-6. How isoenergetic transfer of thioester bonds is driven forward by enzymes in the Ub pathway remains unclear. Here we isolate mimics of transient transthiolation intermediates for E1-Ub(T)-E2 and E2-Ub(T)-E3HECT complexes (where T denotes Ub in a thioester or Ub undergoing transthiolation) using a chemical strategy with native enzymes and near-native Ub to capture and visualize a continuum of structures determined by single-particle cryo-electron microscopy. These structures and accompanying biochemical experiments illuminate conformational changes in Ub, E1, E2 and E3 that are coordinated with the chemical reactions to facilitate directional transfer of Ub from each enzyme to the next.

2.
Bioorg Med Chem Lett ; 110: 129844, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38851357

RESUMEN

Gram-negative bacteria pose a major challenge in antibiotic drug discovery because their cell envelope presents a permeability barrier that affords high intrinsic resistance to small-molecule drugs. The identification of correlations between chemical structure and Gram-negative permeability would thus enable development of predictive tools to facilitate antibiotic discovery. Toward this end, have advanced a library design paradigm in which various chemical scaffolds are functionalized at different regioisomeric positions using a uniform reagent set. This design enables decoupling of scaffold, regiochemistry, and substituent effects upon Gram-negative permeability of these molecules. Building upon our recent synthesis of a library of C2-substituted sulfamidoadenosines, we have now developed an efficient synthetic route to an analogous library of regioisomeric C8-substituted congeners. The C8 library samples a region of antibiotic-relevant chemical space that is similar to that addressed by the C2 library, but distinct from that sampled by a library of analogously substituted oxazolidinones. Selected molecules were tested for accumulation in Escherichia coli in a pilot analysis, setting the stage for full comparative evaluation of these libraries in the future.


Asunto(s)
Antibacterianos , Diseño de Fármacos , Escherichia coli , Bibliotecas de Moléculas Pequeñas , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Escherichia coli/efectos de los fármacos , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Permeabilidad
3.
Org Lett ; 26(22): 4594-4599, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38781175

RESUMEN

Ubiquitin (Ub) regulates a wide array of cellular processes through post-translational modification of protein substrates. Ub is conjugated at its C-terminus to target proteins via an enzymatic cascade in which covalently bound Ub thioesters are transferred from E1 activating enzymes to E2 conjugating enzymes, and then to certain E3 protein ligases. These transthioesterification reactions proceed via transient tetrahedral intermediates. A variety of chemical strategies have been used to capture E1-Ub-E2 and E2-Ub-E3 mimics, but these introduce modifications that disrupt atomic spacing at the linkage point relative to the native tetrahedral intermediate. We have developed a biselectrophilic PSAN warhead that can be installed in place of the conserved C-terminal glycine in Ub and used to form ternary protein complexes linked via cyanomethyldithioacetals that closely mimic the native tetrahedral intermediates. Investigation of the reactivity of the warhead and substituted analogues led to an effective semisynthetic route to Ub-1-PSAN, which was used to form a ternary E1-Ub*-E2 complex as a mimic of the transthioesterification intermediate.


Asunto(s)
Ubiquitina , Esterificación , Ubiquitina/química , Ubiquitina/síntesis química , Estructura Molecular , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/química
4.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38645185

RESUMEN

Oxidative phosphorylation has emerged as a critical therapeutic vulnerability of M. tuberculosis, but it is unknown how M. tuberculosis and other pathogens maintain respiration during infection. M. tuberculosis synthesizes diisonitrile lipopeptide chalkophores that chelate copper tightly, but their role in host-pathogen interactions is also unknown. We demonstrate that M. tuberculosis chalkophores maintain the function of the heme-copper bcc:aa3 respiratory oxidase under copper limitation. Chalkophore deficient M. tuberculosis cannot survive, respire to oxygen, or produce ATP under copper deprivation in culture. M. tuberculosis lacking chalkophore biosynthesis is attenuated in mice, a phenotype that is severely exacerbated by loss of the CytBD alternative respiratory oxidase (encoded by cydAB), revealing a multilayered flexibility of the respiratory chain that maintains oxidative phosphorylation during infection. Taken together, these data demonstrate that chalkophores counter host inflicted copper deprivation and highlight that protection of cellular respiration is a critical virulence function in M. tuberculosis.

5.
Nat Commun ; 15(1): 937, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297033

RESUMEN

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.


Asunto(s)
Antimaláricos , Aspartato-ARNt Ligasa , Animales , Humanos , Plasmodium falciparum/genética , Asparagina/metabolismo , Aspartato-ARNt Ligasa/genética , Aminoacil-ARN de Transferencia/metabolismo , Antimaláricos/farmacología , Mamíferos/genética
6.
Bioorg Med Chem Lett ; 97: 129486, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734424

RESUMEN

Antibiotic resistance is a major threat to public health, and Gram-negative bacteria pose a particular challenge due to their combination of a low permeability cell envelope and efflux pumps. Our limited understanding of the chemical rules for overcoming these barriers represents a major obstacle in antibacterial drug discovery. Several recent efforts to address this problem have involved screening compound libraries for accumulation in bacteria in order to understand the structural properties required for Gram-negative permeability. Toward this end, we used cheminformatic analysis to design a library of sulfamidoadenosines (AMSN) having diverse substituents at the adenine C2 position. An efficient synthetic route was developed with installation of a uniform cross-coupling reagent set using Sonogashira and Suzuki reactions of a C2-iodide. The potential utility of these compounds was demonstrated by pilot analysis of selected analogues for accumulation in Escherichia coli.


Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Antibacterianos/química , Descubrimiento de Drogas , Escherichia coli , Permeabilidad/efectos de los fármacos , Adenosina/química , Adenosina/farmacología
7.
Chem Sci ; 14(38): 10524-10531, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37799988

RESUMEN

Carboxylic acids are an important structural feature in many drugs, but are associated with a number of unfavorable pharmacological properties. To address this problem, carboxylic acids can be replaced with bioisosteric mimics that interact similarly with biological targets but avoid these liabilities. Recently, 3-oxetanols have been identified as useful carboxylic acid bioisosteres that maintain similar hydrogen-bonding capacity while decreasing acidity and increasing lipophilicity. However, the installation of 3-oxetanols generally requires multistep de novo synthesis, presenting an obstacle to investigation of these promising bioisosteres. Herein, we report a new synthetic approach involving direct conversion of carboxylic acids to 3-oxetanols using a photoredox-catalyzed decarboxylative addition to 3-oxetanone. Two versions of the transformation have been developed, in the presence or absence of CrCl3 and TMSCl cocatalysts. The reactions are effective for a variety of N-aryl α-amino acids and have excellent functional group tolerance. The Cr-free conditions generally provide higher yields and avoid the use of chromium reagents. Further, the Cr-free conditions were extended to a series of N,N-dialkyl α-amino acid substrates. Mechanistic studies suggest that the Cr-mediated reaction proceeds predominantly via in situ formation of an alkyl-Cr intermediate while the Cr-free reaction proceeds largely via radical addition to a Brønsted acid-activated ketone. Chain propagation processes provide quantum yields of 5 and 10, respectively.

8.
Org Lett ; 25(34): 6295-6299, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37602700

RESUMEN

Directed enzyme-prodrug therapies used for targeted drug delivery require prodrugs that are chemically stable and processed efficiently by the activating enzyme. We recently reported the development of AMS-6-Glu (2), a glutamate-masked version of the cytotoxic natural product 5'-O-sulfamoyladenosine (AMS, 1) that can be activated by Pseudomonas carboxypeptidase G2 (CPG2). Herein, we report the development of a second-generation prodrug, AMS-5'-PHOBA-Glu (5), that undergoes cleavage by CPG2 with >160-fold higher efficiency. Use of a p-hydroxybenzyl alcohol (PHOBA) self-immolative linker overcame unexpected chemical instability observed with a conventional p-aminobenzyl alchohol (PABA) linker.


Asunto(s)
Antineoplásicos , Profármacos , Profármacos/farmacología , gamma-Glutamil Hidrolasa , Ácido Glutámico , Sistemas de Liberación de Medicamentos
9.
Res Sq ; 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37546892

RESUMEN

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure activity relationship and the selectivity mechanism.

10.
Cancer Immunol Res ; 11(9): 1253-1265, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37379366

RESUMEN

Genetically engineered, cytotoxic, adoptively transferred T cells localize to antigen-positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with a killing mechanism orthogonal to conventional T-cell cytotoxicity. These drug-delivering cells, termed Synthetic Enzyme-Armed KillER (SEAKER) cells, demonstrated efficacy in mouse lymphoma xenograft models. However, the interactions of an immunocompromised xenograft with such complex engineered T cells are distinct from those in an immunocompetent host, precluding an understanding of how these physiologic processes may affect the therapy. Herein, we expanded the repertoire of SEAKER cells to target solid-tumor melanomas in syngeneic mouse models using specific targeting with T-cell receptor (TCR)-engineered T cells. We demonstrate that SEAKER cells localized specifically to tumors, and activated bioactive prodrugs, despite host immune responses. We additionally show that TCR-engineered SEAKER cells were efficacious in immunocompetent hosts, demonstrating that the SEAKER platform is applicable to many adoptive cell therapies.


Asunto(s)
Inmunoterapia Adoptiva , Melanoma , Ratones , Animales , Humanos , Linfocitos T Citotóxicos , Ingeniería Genética , Receptores de Antígenos de Linfocitos T/genética
11.
BMJ Case Rep ; 16(6)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37348927

RESUMEN

A man in his early 20s with heart failure with reduced ejection fraction secondary to non-compaction cardiomyopathy (Titin (TTN) gene mutation positive) was transitioned from left ventricular assist device (LVAD) mechanical support to heart transplantation. Transplantation was successful; however, LVAD explantation resulted in innumerable complications secondary to penetration of the driveline into the peritoneal cavity. He developed an enterocutaneous fistula which led to concurrent malnutrition, poor wound healing, systemic infection, and allograft rejection in a patient less than 1 month after heart transplantation on immunosuppression.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Trasplante de Corazón , Corazón Auxiliar , Masculino , Humanos , Corazón Auxiliar/efectos adversos , Trasplante de Corazón/efectos adversos , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/cirugía , Cardiomiopatías/etiología , Cavidad Peritoneal
12.
bioRxiv ; 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37205431

RESUMEN

Genetically engineered, cytotoxic, adoptive T cells localize to antigen positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with an orthogonal killing mechanism to conventional T-cell cytotoxicity. These drug-delivering cells, termed Synthetic Enzyme-Armed KillER (SEAKER) cells, demonstrated efficacy in mouse lymphoma xenograft models. However, the interactions of an immunocompromised xenograft with such complex engineered T cells are distinct from those in an immunocompetent host, precluding an understanding of how these physiologic processes may affect the therapy. Here, we also expand the repertoire of SEAKER cells to target solid-tumor melanomas in syngeneic mouse models using specific targeting with TCR-engineered T cells. We demonstrate that SEAKER cells localize specifically to tumors, and activate bioactive prodrugs, despite host immune responses. We additionally show that TCR-engineered SEAKER cells are efficacious in immunocompetent hosts, demonstrating that the SEAKER platform is applicable to many adoptive cell therapies.

13.
ACS Chem Biol ; 18(6): 1360-1367, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37172287

RESUMEN

Eponemycin is an α,ß-epoxyketone natural product that inhibits the proteasome via covalent interaction of the epoxyketone warhead with catalytic N-terminal threonine residues. The epoxyketone warhead is biosynthesized from a ß-ketoacid substrate by EpnF, a recently identified flavin-dependent acyl-CoA dehydrogenase-like enyzme. Herein, we report biochemical characterization of EpnF kinetics and substrate scope using a series of synthetic ß-ketoacid substrates. These studies indicate that epoxide formation likely occurs prior to other tailoring reactions in the biosynthetic pathway, and have led to the identification of novel epoxyketone analogues with potent anticancer activity.


Asunto(s)
Antineoplásicos , Inhibidores de Proteasoma , Inhibidores de Proteasoma/metabolismo , Antineoplásicos/farmacología , Amidas/química , Serina/química
14.
J Cardiothorac Vasc Anesth ; 37(7): 1075-1085, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37059640

RESUMEN

Heart failure is a disease affecting 6.2 million adults in the United States, resulting in morbidity and mortality in the short and long terms. Although options such as mechanical circulatory support and transplantation are considered a solution when medical management is insufficient, heart transplantation (HTX) is regarded as the better option, with a lower incidence of multiorgan failure. A limiting step for HTX is the inadequate donor pool, so options like donation after circulatory death and xenotransplantation have emerged as alternatives. The cardiac anesthesiologist plays a pivotal role in the perioperative management of donors and recipients. A full understanding of the nature of the disease, pathophysiology, and perioperative management is paramount to the success of an HTX program. The authors include an index case to illustrate the multidisciplinary approach to the disease and the implications of managing these complex patients presenting to the operating room.


Asunto(s)
Insuficiencia Cardíaca , Trasplante de Corazón , Adulto , Humanos , Estados Unidos , Trasplante de Corazón/métodos , Insuficiencia Cardíaca/cirugía , Donantes de Tejidos , Morbilidad
15.
Antimicrob Agents Chemother ; 67(2): e0137722, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36715507

RESUMEN

Gram-negative bacteria are notoriously more resistant to antibiotics than Gram-positive bacteria, primarily due to the presence of the outer membrane and a plethora of active efflux pumps. However, the potency of antibiotics also varies dramatically between different Gram-negative pathogens, suggesting major mechanistic differences in how antibiotics penetrate permeability barriers. Two approaches are used broadly to analyze how permeability barriers affect intracellular accumulation of antibiotics. One compares the antibacterial activities of compounds, while the other measures the total intracellular concentrations of compounds in nongrowing cells, with both approaches using strains harboring wild-type or genetically modified efflux systems and permeability barriers. Whether the two assays provide similar mechanistic insights remains unclear. In this study, we analyzed the intracellular accumulation and antibacterial activities of antibiotics representative of major clinical classes in three Gram-negative pathogens of high clinical importance, Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii. We found that both assays are informative about properties of permeability barriers, but there is no quantitative agreement between the assays. Our results show that the three pathogens differ dramatically in their permeability barriers, with the outer membrane playing the dominant role in E. coli and P. aeruginosa but efflux dominating in A. baumannii. However, even compounds of the same chemotype may use different permeation pathways depending on small chemical modifications. Accordingly, a classification analysis revealed limited conservation of molecular properties that define compound penetration into the three bacteria.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Transporte Biológico , Bacterias Gramnegativas/metabolismo , Permeabilidad , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/metabolismo
16.
Ann Surg ; 277(5): e1169-e1175, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34913889

RESUMEN

OBJECTIVE: We expand the application of cost frontiers and introduce a novel approach using qualitative multivariable financial analyses. SUMMARY BACKGROUND DATA: With the creation of a 5 + 2-year fellowship program in July 2016, the Division of Vascular Surgery at the University of Vermont Medical Center altered the underlying operational structure of its inpatient services. METHOD: Using WiseOR (Palo Alto, CA), a web-based OR management data system, we extracted the operating room metrics before and after August 1, 2016 service for each 4-week period spanning from September 2015 to July 2017. The cost per minute modeled after Childers et al's inpatient OR cost guidelines was multiplied by the after-hours utilization to determine variable cost. Zones with corresponding cutoffs were used to graphically represent cost efficiency trends. RESULTS: Caseload/FTE for attending surgeons increased from 11.54 cases per month to 13.02 cases per month ( P = 0.0771). Monthly variable costs/FTE increased from $540.2 to $1873 ( P = 0.0138). Monthly revenue/FTE increased from $61,505 to $70,277 ( P = 0.2639). Adjusted monthly reve-nue/FTE increased from $60,965 to $68,403 ( P = 0.3374). Average monthly percent of adjusted revenue/FTE lost to variable costs increased from 0.85% to 2.77% ( P = 0.0078). Adjusted monthly revenue/case/FTE remained the same from $5309 to $5319 ( P = 0.9889). CONCLUSION: In summary, we demonstrate that multivariable cost (or performance) frontiers can track a net increase in profitability associated with fellowship implementation despite diminishing returns at higher caseloads.


Asunto(s)
Especialidades Quirúrgicas , Cirujanos , Humanos , Becas , Costos y Análisis de Costo , Benchmarking
17.
mBio ; 13(5): e0251322, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36197089

RESUMEN

Bacterial pathogens and their hosts engage in intense competition for critical nutrients during infection, including metals such as iron, copper, and zinc. Some metals are limited by the host, and some are deployed by the host as antimicrobials. To counter metal limitation, pathogens deploy high-affinity metal acquisition systems, best exemplified by siderophores to acquire iron. Although pathogen strategies to resist the toxic effects of high Cu have been elucidated, the role of Cu starvation and the existence of Cu acquisition systems are less well characterized. In this study, we examined the role of diisonitrile chalkophores of pathogenic mycobacteria, synthesized by the enzymes encoded by the virulence-associated nrp gene cluster, in metal acquisition. nrp gene cluster expression is strongly induced by starvation or chelation of Cu but not starvation of Zn or excess Cu. Mycobacterium tuberculosis and Mycobacterium marinum strains lacking the nrp-encoded nonribosomal peptide sythetase, the fadD10 adenylate-forming enzyme, or the uncharacterized upstream gene ppe1 are all sensitized to Cu, but not Zn, starvation. This low Cu sensitivity is rescued by genetic complementation or by provision of a synthetic diisonitrile chalkophore. These data demonstrate that diisonitrile lipopeptides in mycobacteria are chalkophores that facilitate survival under Cu-limiting conditions and suggest that Cu starvation is a relevant stress for M. tuberculosis in the host. IMPORTANCE Bacterial pathogens and their hosts engage in intense competition for nutrients, including metals. Mycobacterium tuberculosis, the cause of tuberculosis, lives within host macrophages and is subject to diverse stresses, including metal excess and metal limitation. In this study, we demonstrated that the nrp gene cluster, required for M. tuberculosis virulence and which directs synthesis of diisonitrile lipopeptides, mediates copper acquisition. Copper, but not zinc, deprivation strongly induces diisonitrile biosynthesis, and M. tuberculosis strains lacking the nrp gene, or the associated genes fadD10 or ppe1, are all sensitized to copper chelation or copper deprivation. These results establish a copper binding, or chalkophore, system in M. tuberculosis and indicate that resistance to copper restriction plays an important role in the ability of this global pathogen to cause infection.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Cobre/farmacología , Cobre/metabolismo , Sideróforos/metabolismo , Lipopéptidos/farmacología , Mycobacterium tuberculosis/metabolismo , Tuberculosis/microbiología , Zinc/metabolismo , Quelantes , Hierro/metabolismo , Metales
18.
Anaerobe ; 74: 102551, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35341959

RESUMEN

In this study, we isolated and molecularly characterized 10 (1.6%) C. difficile isolates from 644 commercially available raw meat samples. Molecular typing by PFGE and ribotyping revealed NAP and ribotypes commonly associated with human clinical cases, suggesting retail meat could be a possible source of transmission warranting further investigation.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Canadá/epidemiología , Clostridioides , Clostridioides difficile/genética , Infecciones por Clostridium/epidemiología , Humanos , Carne , Ribotipificación
19.
Nat Chem Biol ; 18(2): 216-225, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34969970

RESUMEN

Chimeric antigen receptor (CAR)-T cells represent a major breakthrough in cancer therapy, wherein a patient's own T cells are engineered to recognize a tumor antigen, resulting in activation of a local cytotoxic immune response. However, CAR-T cell therapies are currently limited to the treatment of B cell cancers and their effectiveness is hindered by resistance from antigen-negative tumor cells, immunosuppression in the tumor microenvironment, eventual exhaustion of T cell immunologic functions and frequent severe toxicities. To overcome these problems, we have developed a novel class of CAR-T cells engineered to express an enzyme that activates a systemically administered small-molecule prodrug in situ at a tumor site. We show that these synthetic enzyme-armed killer (SEAKER) cells exhibit enhanced anticancer activity with small-molecule prodrugs, both in vitro and in vivo in mouse tumor models. This modular platform enables combined targeting of cellular and small-molecule therapies to treat cancers and potentially a variety of other diseases.


Asunto(s)
Antineoplásicos/uso terapéutico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Sistemas de Liberación de Medicamentos , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias/terapia , Neoplasias Experimentales , Profármacos , Receptores Quiméricos de Antígenos , Linfocitos T , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Nat Prod Rep ; 39(1): 20-32, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34342327

RESUMEN

Covering: 1981 to 2019Natural products continue to play a major role in drug discovery, with half of new chemical entities based structurally on a natural product. Herein, we report a cheminformatic analysis of the structural and physicochemical properties of natural product-based drugs in comparison to top-selling brand-name synthetic drugs, and a selection of chemical probes recently discovered from diversity-oriented synthesis libraries. In this analysis, natural product-based drugs covered a broad range of chemical space based on size, polarity, and three-dimensional structure. Natural product-based structures were also more prevalent in top-selling drugs of 2018 compared to 2006. Further, the drugs clustered well according to biosynthetic origins, but less so based on therapeutic classes. Macrocycles occupied distinctive and relatively underpopulated regions of chemical space, while chemical probes largely overlapped with synthetic drugs. This analysis highlights the continued opportunities to leverage natural products and their pharmacophores in modern drug discovery.


Asunto(s)
Productos Biológicos/química , Quimioinformática , Descubrimiento de Drogas , Descubrimiento de Drogas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...