Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Digit Med ; 7(1): 223, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191913

RESUMEN

The digital revolution in healthcare, amplified by the COVID-19 pandemic and artificial intelligence (AI) advances, has led to a surge in the development of digital technologies. However, integrating digital health solutions, especially AI-based ones, in rare diseases like Waldenström macroglobulinemia (WM) remains challenging due to limited data, among other factors. CURATE.AI, a clinical decision support system, offers an alternative to big data approaches by calibrating individual treatment profiles based on that individual's data alone. We present a case study from the PRECISE CURATE.AI trial with a WM patient, where, over two years, CURATE.AI provided dynamic Ibrutinib dose recommendations to clinicians (users) aimed at achieving optimal IgM levels. An 80-year-old male with newly diagnosed WM requiring treatment due to anemia was recruited to the trial for CURATE.AI-based dosing of the Bruton tyrosine kinase inhibitor Ibrutinib. The primary and secondary outcome measures were focused on scientific and logistical feasibility. Preliminary results underscore the platform's potential in enhancing user and patient engagement, in addition to clinical efficacy. Based on a two-year-long patient enrollment into the CURATE.AI-augmented treatment, this study showcases how AI-enabled tools can support the management of rare diseases, emphasizing the integration of AI to enhance personalized therapy.

2.
Eur Heart J Digit Health ; 5(1): 41-49, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38264697

RESUMEN

Aims: Artificial intelligence-driven small data platforms such as CURATE.AI hold potential for personalized hypertension care by assisting physicians in identifying personalized anti-hypertensive doses for titration. This trial aims to assess the feasibility of a larger randomized controlled trial (RCT), evaluating the efficacy of CURATE.AI-assisted dose titration intervention. We will also collect preliminary efficacy and safety data and explore stakeholder feedback in the early design process. Methods and results: In this open-label, randomized, pilot feasibility trial, we aim to recruit 45 participants with primary hypertension. Participants will be randomized in 1:1:1 ratio into control (no intervention), home blood pressure monitoring (active control; HBPM), or CURATE.AI arms (intervention; HBPM and CURATE.AI-assisted dose titration). The home treatments include 1 month of two-drug anti-hypertensive regimens. Primary endpoints assess the logistical (e.g. dose adherence) and scientific (e.g. percentage of participants for which CURATE.AI profiles can be generated) feasibility, and define the progression criteria for the RCT in a 'traffic light system'. Secondary endpoints assess preliminary efficacy [e.g. mean change in office blood pressures (BPs)] and safety (e.g. hospitalization events) associated with each treatment protocol. Participants with both baseline and post-treatment BP measurements will form the intent-to-treat analysis. Following their involvement with the CURATE.AI intervention, feedback from CURATE.AI participants and healthcare providers will be collected via exit survey and interviews. Conclusion: Findings from this study will inform about potential refinements of the current treatment protocols before proceeding with a larger RCT, or potential expansion to collect additional information. Positive results may suggest the potential efficacy of CURATE.AI to improve BP control. Trial registration number: NCT05376683.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...