Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(36): e2405430, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38923003

RESUMEN

Thermochromic materials are substances that change color in response to temperature variations. Today, sustainability concerns are the main drivers of thermochromic research, with smart, energy-efficient windows being one of the primary applications. While vanadium oxides and leuco dyes are traditionally the main thermochromic materials, hydrogels operating based on change of solvation have risen as some of the most promising materials due to their high optical transparency and good solar modulating abilities. In this work, a distinct mechanism for thermochromism arising from the crystalline solid to amorphous solid polymer transition, with a corresponding transition from an opaque state to a transparent state is disclosed. Both ultra-high optical transparency (Tlum up to 99%) and ultra-high solar modulation (ΔTsolar up to 87%) are observed. The transition temperature is tunable from 11 to 61 °C by tuning the polymer structure. When incorporated into applications such as greenhouse materials and thermoelectric devices, significant performance enhancement is observed, due to the thermochromic material functioning as a thermal valve, speeding up solar heat absorbance while inhibiting the cooling process via its phase transition.

2.
Exploration (Beijing) ; 4(1): 20230016, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38854494

RESUMEN

Polyethylene glycol (PEG) is widely used as phase change materials (PCM) due to their versatile working temperature and high latent heat. However, the low molecular weight of PEG prevents from the formation of flexible microfibers, and the common leakage problem associated with solid-liquid PCM further hinders their applications in various fields. To address these challenges, polyethylene oxide (PEO) is incorporated as the supporting matrix for PEG, leading to a successful electrospinning of fibrous mats. Due to the similar chemical nature of both PEG and PEO, the blended composites show great compatibility and produce uniform electrospun fibers. The thermal properties of these fibers are characterized by DSC and TGA, and supercooling for the PEG(1050) component is effectively reduced by 75-85%. The morphology changes before and after leakage test are analyzed by SEM. Tensile and DMA tests show that the presence of PEG(1050) component contributes to plasticization effect, improving mechanical and thermomechanical strength. The ratio of PEO(600K):PEG(1050) at 7:3 affords the optimal performance with good chemical and form-stability, least shrinkage, and uniformity. These fibrous mats have potential applications in areas of food packaging, flexible wearable devices, or textiles to aid in thermal regulation.

3.
Langmuir ; 30(12): 3448-54, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24617527

RESUMEN

Stimuli-responsive liquid marbles for controlled release typically rely on organic moieties that require lengthy syntheses. We report herein a facile, one-step synthesis of hydrophobic and oleophobic TiO2 nanoparticles that display photoresponsive wettability. Water liquid marbles stabilized by these photoresponsive TiO2 particles were found to be stable when shielded from ultraviolet (UV) radiation; however, they quickly collapsed after being irradiated with 302 nm UV light. Oil- and organic-solvent-based liquid marbles could also be fabricated using oleophobic TiO2 nanoparticles and show similar UV-induced collapse. Finally, we demonstrated the formation of the micronized form of water liquid marbles, also known as dry water, by homogenization of the TiO2 nanoparticles with water. The TiO2 dry water displayed a similar photoresponse, whereby the micronized liquid marbles collapsed after irradiation and the dry water turned from a free-flowing powder to a paste. Hence, by exploiting the photoresponsive wettability of TiO2, we fabricated liquid marbles and dry water that display photoresponse and studied the conditions required for their collapse.


Asunto(s)
Titanio/química , Rayos Ultravioleta , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Aceites/química , Tamaño de la Partícula , Procesos Fotoquímicos , Solventes/química , Propiedades de Superficie , Humectabilidad
4.
Chem Commun (Camb) ; 46(46): 8773-5, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-20963221

RESUMEN

Carbon-SnO(2) core-shell hybrid nanofibers were prepared via single-spinneret electrospinning and subsequent heat treatment. The Kirkendall effect during the heat treatment is found to be responsible for the formation of core-shell morphology. The route is proven to be generic for fabrication of carbon-metal oxide or carbon-metal core-shell nanofibers, and corresponding nanotubes.


Asunto(s)
Carbono/química , Nanofibras/química , Compuestos de Estaño/química , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA