Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Hazard Mater ; 474: 134806, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850946

RESUMEN

Plastics are crucial constituents in electronic waste (e-waste) and part of the issue in e-waste recycling and environmental protection. However, previous studies have mostly focused on plastic recovery or thermal behavior of flame retardants, but not both simultaneously. The present study simulated the process of e-waste thermal treatment to explore tetrabromobisphenol A (TBBPA) pyrolysis at various temperatures using polystyrene (PS), polyvinyl chloride (PVC), and e-waste plastics as polymer matrices. Pyrolysis of TBBPA produced bromophenol, bromoacetophenone, bromobenzaldehyde, and bromobisphenol A. Co-pyrolysis with the polymer matrices increased emission factors by 1 - 2 orders of magnitude. The pyrolytic products of TBBPA, TBBPA+PS, and TBBPA+PVC were mainly low-brominated bisphenol A, while that of TBBPA in e-waste plastics was consistently bromophenol. Increasing temperature drove up the proportions of gaseous and particulate products, but lowered the relative abundances of inner wall adsorbed and residual products in pyrolysis of pure TBBPA. In co-pyrolysis of TBBPA with polymer matrix, the proportions of products in different phases were no longer governed solely by temperature, but also by polymer matrix. Co-pyrolysis of TBBPA with PS generated various bromophenols, while that with PVC produced chlorophenols and chlorobrominated bisphenol A. Transformation pathways, deduced by ab initio calculations, include hydrogenation-debromination, isopropylphenyl bond cleavage, oxidation, and chlorination.

2.
Environ Int ; 184: 108476, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38346376

RESUMEN

Fish are an important pollution indicator for biomonitoring of halogenated organic compounds (HOCs) in aquatic environments, and HOCs in fish may pose health threats to consumers. This study performed nontarget and comprehensive analyses of HOCs in fish from an e-waste recycling zone by gas chromatography-high-resolution mass spectrometry, and further prioritized their human exposure risks. A total of 1652 formulas of HOCs were found in the fish, of which 1222, 117, and 313 were organochlorines, organobromines, and organochlorine-bromines, respectively. The total concentrations of HOCs were 15.4-18.7 µg/g (wet weight), and organobromines were the predominant (14.1-16.8 µg/g). Of the HOCs, 41 % were elucidated with tentative structures and divided into 13 groups. The estimated total daily exposures of HOCs via dietary consumption of the fish for local adult residents were 3082-3744 ng/kg bw/day. The total exposures were dominated by several groups of HOCs with the following contribution order: polyhalogenated biphenyls and their derivatives > polyhalogenated diphenyl ethers > halo- (H-)alkanes/olefines > H-benzenes > H-dioxins > H-polycyclic aromatic hydrocarbons > H-phenols. The comprehensive characterization and prioritization results provide an overview of the species and distributions of HOCs in edible fish, and propose an inventory of crucial HOCs associated with high exposure risks.


Asunto(s)
Dioxinas , Hidrocarburos Clorados , Hidrocarburos Policíclicos Aromáticos , Adulto , Animales , Humanos , Dioxinas/análisis , Cromatografía de Gases y Espectrometría de Masas , Éteres Difenilos Halogenados/análisis , Hidrocarburos Clorados/análisis , Compuestos Orgánicos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
3.
Environ Sci Technol ; 57(44): 17099-17109, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37878998

RESUMEN

Poly- and perfluoroalkyl acids (PFAAs) are a large family of widespread contaminants of worldwide concern and well-known as "forever chemicals". Direct emission of PFAAs from the fluorochemical industry is a crucial source of PFAA pollutants in the environment. This study implemented nontarget analysis and comprehensive characterization for a category of new PFAA contaminants, i.e., iodinated PFAAs (IPFAAs), in fluorochemical industry wastewater and relevant contaminated river water by liquid chromatography-high-resolution mass spectrometry with a cascade precursor ion exclusion (PIE) strategy and in-house developed data extraction and processing algorithms. A total of 26 IPFAAs (including 2 isomers of an IPFAA) were found and identified with tentative molecular structures. Semiquantification of the IPFAAs was implemented, and the total concentrations of IPFAAs were 0.16-285.52 and 0.15-0.17 µg/L in wastewater and river water, respectively. The high concentrations in association with the predicted ecotoxicities and environmental behaviors demonstrate that these IPFAAs are worthy of more concern and further in-depth research. The cascade PIE strategy along with the data extraction and processing algorithms can be extended to nontarget analysis for other pollutants beyond IPFAAs. The nontarget identification and characterization outcomes provide new understanding on the environmental occurrence and pollution status of IPFAAs from a comprehensive perspective.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Contaminantes Químicos del Agua , Aguas Residuales , Ríos/química , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Agua
4.
Anal Chem ; 95(26): 10052-10060, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37337419

RESUMEN

Halogenated organic additives (HOAs) are used in plastic components of various electrical products, potentially causing detrimental effects on the eco-environment and humans. Besides reported HOAs, many unknown HOAs may be present in electrical product plastics and urgently require identification and characterization. This study performed nontarget analysis and comprehensive characterization of HOAs in three typical electrical product plastics by nontarget analysis using gas chromatography-negative chemical ionization-high-resolution mass spectrometry in association with in-house-developed chlorine/bromine-specific data-processing algorithms. A total of 674 formulas of HOAs were identified in the plastics dismantled from three electrical products, among which 166, 362, and 146 were organochlorines, organobromines, and mix-chlorinated/brominated organic compounds, respectively. The identified HOAs were semiquantified, and the total concentrations of HOAs in individual plastics were 445-1549 ng/g. Organobromines showed the most species and the highest abundances in all of the plastics, of which the abundances accounted for 86.6-98.0% of the total HOAs. Partial HOAs (209 formulas) were tentatively structurally elucidated, which were classified into 13 groups, i.e., halogenated alkyl phenoxyethyls (H-alkyl phenoxyethyls), H-alkylbenzenes, H-benzenes, H-bisphenol A (H-BPAs), H-dioxins, H-diphenyl ethers, H-biphenyls/terphenyls, H-polycyclic aromatic hydrocarbons, H-phenols, H-phenyl esters, H-phenyl-aldehydes/ketones, H-quinones, and an undefined group containing the HOAs such as dechlorane plus and chlordane. H-BPAs were the predominant HOAs in the plastics, showing relatively high concentrations (13-281 ng/g), and tetrabromobisphenol A was the most abundant H-BPA, with the concentrations of 9-196 ng/g. The comprehensive characterization results represent a holistic picture on the species features and abundance distributions of HOAs in electrical product plastics and provide an inventory of crucial HOAs worthy of concern. HOAs may migrate from plastics and release into the environment and are possibly an important source of halogenated organic pollutants in the environment, thus calling for further investigation and proper regulation.


Asunto(s)
Dioxinas , Contaminantes Ambientales , Hidrocarburos Clorados , Humanos , Plásticos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidrocarburos Clorados/análisis , Contaminantes Ambientales/análisis , Dioxinas/análisis
5.
Environ Sci Technol ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36622151

RESUMEN

Per- and polyfluoroalkyl acids (PFAAs) including polyfluoroalkyl carboxylic acids and polyfluoroalkyl sulfonic acids are a large category of crucial environmental pollutants of global concern. Besides known PFAAs, numerous unknown species may exist in the environment, urgently needing discovery and characterization. This study implemented nontarget analysis for a group of novel PFAA pollutants, viz., iodinated PFAAs (I-PFAAs) in wastewater from a fluorochemical manufacturing park by liquid chromatography-high-resolution mass spectrometry in combination with an iodine-specific data-processing algorithm. The algorithm took into account the diagnostic fragment iodine ion (I-) together with carbon and sulfur isotopologue distributions. In total, 18 I-PFAA formulas involving 21 congeners were identified. Semiquantification was conducted, and the total concentrations of I-PFAAs were 1.9-274.7 µg/L, indicating severe pollution of I-PFAAs in the wastewater. The determined concentrations along with predicted environmental behaviors and toxicities demonstrate that I-PFAAs merit further in-depth investigation. The analytical method including the instrumental analysis and data-processing algorithm can be extended to screening and identification of I-PFAAs in other matrices. Furthermore, the analysis results for the first time provide recognition on the occurrence, distribution features, and pollution status of I-PFAAs in the environment.

6.
J Chromatogr A ; 1682: 463466, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36155075

RESUMEN

Alkylamides are used as plastic additives in various materials and products, potentially posing risks to human health and the environment. Besides reported alkylamides in plastics, many unknown alkylamides may exist in various plastics, which are needing identification and characterization. This study performed nontarget analysis of alkylamides in electrical product plastics by gas chromatography-positive chemical ionization high-resolution mass spectrometry in full scan mode and an in-house developed data-processing algorithm. The algorithm was based on exact mass discrepancies and signal intensities of specific fragment and adduct ions of alkylamides, and was able to efficiently screen and anchor quasi-molecular ions. As a whole, 36 alkylamides were identified, of which 7 were found in all the plastics and 14 were observed in ≥ 2 plastics. The content distributions were elucidated with normalized abundances of quasi-molecular ions of alkylamides. Oleamide showed chromatographic peaks with the highest abundances in individual samples and was the most abundant alkylamide in all the plastics, of which the normalized abundances accounted for 57.42-70.06% of the total abundances of all alkylamides. Besides, (2E)-2-hexenamide, palmitamide and stearamide showed relatively high abundances, of which the relative abundances were 6.99-25.79%. The high abundances together with predicted environmental behaviors and toxicities indicate that alkylamides in plastics are worthy of further in-depth research. The nontarget analysis method including the instrumental analysis and data-processing algorithm can be applied to identification and characterization of alkylamides in more diverse matrices. In addition, the analysis results for the first time provide knowledge about the specific characteristics and relative content distributions of alkylamides in electrical product plastics from a comprehensive perspective.


Asunto(s)
Amidas , Plásticos , Algoritmos , Amidas/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Iones , Plásticos/química
7.
J Chromatogr A ; 1682: 463489, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36130425

RESUMEN

A reliable and sensitive analyzing method was developed and validated for determination of 13 novel bisphenol analogues (BPs) along with bisphenol A (BPA) in organism tissues. The complex organism tissues were treated by ultrasonic-assisted extraction using acetonitrile/formic acid (99:1, v/v), followed by successive purification using enhanced matrix removal-lipid sorbents and primary secondary amine sorbents. The BPs were finally determined by ultra-high performance liquid chromatography-tandem mass spectrometry after derivatization using pyridine-3-sulfonyl chloride. Satisfactory recoveries of 75 - 118% were obtained for the BPs, with good repeatability (RSD < 20%). Matrix interferences were efficiently diminished. The method quantification limits (MQLs) reached 0.003 - 0.1 ng g-1 dry weight (dw). The validated method was successfully applied to a preliminary investigation of the BPs in wild marine organisms collected from the nearshore waters along the coast of Guangdong, China. Besides BPA, novel BPs such as bisphenol F, bisphenol AF, and tetrabromobisphenol A were also detected at < MDL - 15.5 ng g-1 dw. This work laid a strong basis for further in-depth research on bioaccumulation of the novel BPs in the environment.


Asunto(s)
Compuestos de Bencidrilo , Espectrometría de Masas en Tándem , Acetonitrilos , Aminas , Compuestos de Bencidrilo/análisis , Cromatografía Líquida de Alta Presión , Lípidos , Fenoles , Piridinas , Espectrometría de Masas en Tándem/métodos
8.
Anal Chim Acta ; 1222: 340171, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35934429

RESUMEN

Nontarget analysis enables high-efficiency screening and identification of halogenated organic pollutants (HOPs) in complex matrices irrespective of lacking authentic standards, particularly for novel and emerging species, thereby realizing comprehensive component characterization of HOPs. Notwithstanding, nontarget analysis and comprehensive characterization of HOPs remain on the way to improvement. In this study, we implemented nontarget analysis of HOPs in fly ash, egg and sediment using gas chromatography quadrupole-orbitrap high-resolution mass spectrometry with the aid of chromatogram segmentation and Cl/Br-specific screening algorithms, and further performed comprehensive characterization of components and distribution of HOPs. In total, 122 HOP formulas were identified and tentatively assigned with structures, of which 28 were found in ≥ two matrices. Taking isomers into account, in total 1059 HOP congeners were found. Based on the identification and semiquantification results, the chemical components and concentration profiles of HOPs were preliminarily clarified, and accordingly the overall pollution signatures of HOPs were sketched. The total concentrations of HOPs in the fly ash, egg and sediment were 4.7, 41.2 and 750.8 µg g-1, respectively. Organochlorines were the most abundant among the categories classified by halogen types, and halogenated benzenes, halogenated dioxins, halogenated biphenyls/terphenyls and halogenated polycyclic aromatic hydrocarbons (H-PAHs) were the predominant of the structurally classified categories. Moreover, dozens of formulas of novel/little-known HOPs such as mix-chlorinated/brominated PAHs with ≥4 aromatic rings and polychlorinated terphenyls were identified. This study presents an accurate and high-performance nontarget analysis method for HOPs in complex matrices, and yields new cognitions on the pollution status of HOPs from an overall perspective.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Algoritmos , Ceniza del Carbón/análisis , Contaminantes Ambientales/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidrocarburos Policíclicos Aromáticos/análisis
9.
Anal Chim Acta ; 1204: 339618, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35397908

RESUMEN

Halogenated organic compounds (HOCs) are a huge group of pollutants, which have caused severe environmental pollution worldwide. This study developed a nontarget analysis method for characterization of known and unknown HOCs in tap water, fly ash, soil and sediment using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) with aid of scripting data-processing approaches. The FT-ICR-MS was equipped with an electrospray ionization source operated in negative ion mode, and full scan at a mass resolution around 200,000 was applied. Data screening scripts were developed based on exact mass differences and abundance ratios between neighboring chlorine/bromine isotopologues. Cosine similarity analysis was applied to evaluating similarity between measured and simulated isotopologue distributions which were constituted by abundance ratios between neighboring isotopologues for identification of polychlorinated and polybrominated compounds. From huge amount of peaks in raw mass spectra, thousands of MS features of HOCs were screened out. In total 824 HOC formulae were finally identified, including 702 organochlorines, 108 organobromines, and 14 mix-chlorine/bromine-containing organic compounds (OClBrs), mainly being monochlorinated/monobrominated compounds (∼90%) whose abundances were also the most prominent. Dozens of HOCs were tentatively structurally elucidated, including halogenated phenols, carboxylic acids, benzenesulfonic acids, etc. Three novel OClBrs were structurally identified, i.e., bromochlorobenzoic acid, bromodichlorophenol and bromotrichlorophenol. The data-processing scripts and strategies can facilitate accurate and high-throughput nontarget analysis of both common and novel/emerging halogenated organic pollutants in complex matrices. The research results provide informative insights into pollution profiles of HOCs in the environment, suggesting that halogenated organic pollutants remain to be seriously concerned.


Asunto(s)
Ceniza del Carbón , Contaminantes Ambientales , Algoritmos , Bromo , Cloro/análisis , Ceniza del Carbón/análisis , Contaminantes Ambientales/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas , Compuestos Orgánicos/análisis , Suelo/química , Agua/análisis
10.
Chemosphere ; 282: 131099, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34119735

RESUMEN

Relative abundances of chlorine isotopologues of polychlorinated organic compounds (POCs) are commonly recognized to comply with binomial distribution. This study investigated whether chlorine isotopologue distributions of polychlorinated organic pollutants are binomial and evaluated implications of the distributions to relevant analytical and environmental research by theoretical derivation, numerical simulation and experiment. Chlorine kinetic isotope effects and equilibrium isotope effects vary in stepwise chlorination reactions, leading to inconsistent chlorine isotope ratios on different reaction positions of products, which results in non-binomial chlorine isotopologue distributions of the products. After physical changes and dechlorination, chlorine isotopologues of POCs are unlikely binomially distributed. The experimental results demonstrated that the chlorine isotopologue distributions of perchloroethylene, trichloroethylene, methyl-triclosan, and 2,3,7,8-tetrachlorodibenzofuran in standards and four polychlorinated biphenyls in both standard solutions and sediments were non-binomial. The patterns of chlorine isotope ratios derived from pairs of neighboring chlorine isotopologues of POCs from different sources were different, implying different isotopologue distributions, which might cause biases in compound-specific isotope analysis of chlorine (CSIA-Cl) and source identification. A complete-isotopologue scheme for isotope ratio calculation is recommended to CSIA-Cl for obtaining accurate data. Gas chromatography-double focusing magnetic-sector high resolution mass spectrometry is a promising instrument for CSIA-Cl that uses the complete-isotopologue scheme due to its excellent sensitivity, selectivity and ruggedness. This study yields new insights into chlorine isotopologue distributions of polychlorinated organic pollutants and proposes practicable solutions to improve CSIA-Cl that uses gas chromatography-mass spectrometry and facilitate source identification of polychlorinated organic pollutants.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Clorados , Bifenilos Policlorados , Isótopos de Carbono , Cloro/análisis , Contaminantes Ambientales/análisis , Hidrocarburos Clorados/análisis , Isótopos , Bifenilos Policlorados/análisis
11.
J Chromatogr A ; 1651: 462311, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34146960

RESUMEN

Compound-specific isotope analysis of chlorine (CSIA-Cl) is a practicable and high-performance approach for revelation of transformation processes and source identification of chlorinated organic pollutants. This study conducted CSIA-Cl for typical polychlorinated organic pollutants using gas chromatography-high resolution mass spectrometry (GCHRMS) with an alternate injection mode using perchloroethylene (PCE) and trichloroethylene (TCE) as model analytes. PCE and TCE standards from two manufacturers were employed for method development, and chlorine isotope ratio calculation schemes were evaluated by experiment and numerical simulation. The achieved precision (standard deviation of isotope ratios) was up to 0.21‰ for PCE and 0.43‰ for TCE. The limits of detection for CSIA-Cl of were 0.05 µg/mL (0.05 ng on column), and the linearities were 0.05-1 µg/mL. Two isotope ratio calculation schemes, i.e., one using complete molecular isotopologues and another using the first pair of neighboring chlorine isotopologues of each analyte, were evaluated in terms of accuracy and precision. The complete-isotopologue scheme showed evidently higher precision and was more competent to reflect trueness than the isotopologue-pair scheme and the two schemes could present completely different outcomes. The method has been successfully applied to PCE and TCE reagents from different suppliers, a trichloromethane reagent, and a plastic material. The relative isotope ratio variations (Δ37Cl) of PCE and TCE in the reagents and plastic material were from -1.84±0.7‰ to 15.12±0.85‰. The analytes from different sources could mostly be discerned from each other by chlorine isotope ratios. This study will be conducive to transformation process elucidation and source identification of for PCE and TCE, and facilitate CSIA-Cl using GC-MS for more polychlorinated organic pollutants, particularly in selection and optimization of isotope ratio calculation schemes.


Asunto(s)
Cloro/análisis , Simulación por Computador , Contaminantes Ambientales/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Halogenación , Compuestos Orgánicos/análisis , Fraccionamiento Químico , Indicadores y Reactivos , Isótopos , Análisis Numérico Asistido por Computador , Plásticos/química , Estándares de Referencia , Tricloroetileno/análisis , Tricloroetileno/química
12.
Anal Chem ; 93(25): 8774-8782, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34128636

RESUMEN

Distributions of chlorine isotopologues are potentially a fingerprint feature of organochlorines. However, the exact distributions remain little known. This study measured compound-specific chlorine isotopologue distributions of six polychlorinated organic compounds (POCs) for source identification. Complete chlorine isotopologues of POCs were detected by gas chromatography coupled to high-resolution mass spectrometry. The measured relative abundances (Ameas), theoretical relative abundances (Atheo), and relative variations between Ameas and Atheo (ΔA) of chlorine isotopologues were determined. These ΔA values were applied to characterize differences in isotopologue distribution patterns, and the ΔA patterns directly illustrated the distribution characteristics. Perchloroethylene (PCE) and trichloroethylene (TCE) from two manufacturers were chosen as model analytes to develop and validate the analytical method, including precision, concentration dependency, and temporal drift. The ΔA values of isotopologues of the PCE and TCE chemicals were from -82.5 to 19.9‰ with standard deviations (SDs) of 0.3-16.9‰. In addition, the ΔA values of the first three isotopologues (with 0-2 37Cl atoms) were from -15.5 to 19.9‰ with SDs of 0.3-1.6‰, showing sufficient precisions. No concentration dependency and temporal drift of ΔA were observed. The method has been successfully applied to source identification for PCE and TCE in commercial chemicals and plastic materials, and four polychlorinated biphenyls in chemicals and sediments, demonstrating that the ΔA values and ΔA patterns were discernable for POCs from different sources. This study demonstrates that compound-specific chlorine isotopologue distributions of POCs are differentiable and measurable, proposing a novel approach to perform fingerprinting analysis for the distributions, which is anticipated to facilitate source identification for organochlorine pollutants.


Asunto(s)
Cloro , Bifenilos Policlorados , Cromatografía de Gases y Espectrometría de Masas , Isótopos , Compuestos Orgánicos , Bifenilos Policlorados/análisis
13.
Environ Sci Technol ; 55(4): 2597-2607, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33502168

RESUMEN

Defect engineering in an electrocatalyst, such as doping, has the potential to significantly enhance its catalytic activity and stability. Herein, we report the use of a defect engineering strategy to enhance the electrochemical reactivity of Ti4O7 through Ce3+ doping (1-3 at. %), resulting in the significantly accelerated interfacial charge transfer and yielding a 37-129% increase in the anodic production of the hydroxyl radical (OH•). The Ce3+-doped Ti4O7 electrodes, [(Ti1-xCex)4O7], also exhibited a more stable electrocatalytic activity than the pristine Ti4O7 electrode so as to facilitate the long-term operation. Furthermore, (Ti1-xCex)4O7 electrodes were also shown to effectively mineralize perfluorooctanesulfonate (PFOS) in electrooxidation processes in both a trace-concentration river water sample and a simulated preconcentration waste stream sample. A 3 at. % dopant amount of Ce3+ resulted in a PFOS oxidation rate 2.4× greater than that of the pristine Ti4O7 electrode. X-ray photoelectron spectroscopy results suggest that Ce3+ doping created surficial oxygen vacancies that may be responsible for the enhanced electrochemical reactivity and stability of the (Ti1-xCex)4O7 electrodes. Results of this study provide insights into the defect engineering strategy for boosting the electrochemical performance of the Ti4O7 electrode with a robust reactivity and stability.


Asunto(s)
Doping en los Deportes , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos , Electrodos , Fluorocarburos , Titanio , Contaminantes Químicos del Agua/análisis
14.
J Mass Spectrom ; 55(9): e4521, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32567160

RESUMEN

Kinetic isotope effects (KIEs) occurring in mass spectrometry (MS) can provide in-depth insights into the fragmentation behaviors of compounds of interest in MS. Yet, the fundamentals of KIEs in collision-induced dissociation (CID) in tandem mass spectrometry (MS/MS) are unclear, and information about chlorine KIEs (Cl-KIEs) of organochlorines in MS is particularly scarce. This study investigated the Cl-KIEs of dichloromethane, trichloroethylene, and tetrachloroethylene during CID using gas chromatography-electron ionization triple-quadrupole MS/MS. Cl-KIEs were evaluated with MS signal intensities. All the organochlorines presented large inverse Cl-KIEs (<1, the departures of Cl-KIEs from 1 denote the magnitudes of Cl-KIEs), showing the largest magnitudes of 0.797, 0.910, and 0.892 at the highest collision energy (60 eV) for dichloromethane, trichloroethylene, and tetrachloroethylene, respectively. For dichloromethane, both intra-ion and inter-ion Cl-KIEs were studied, within the ranges of 0.820-1.020 and 0.797-1.016, respectively, showing both normal and inverse Cl-KIEs depending on collision energies. The observed Cl-KIEs generally declined from large normal to extremely large inverse values with increasing collision energies from 0 to 60 eV but were inferred to be independent of MS signal intensities. The Cl-KIEs are dominated by critical energies at low internal energies of precursor ions, resulting in normal Cl-KIEs; while at high internal energies, the Cl-KIEs are controlled by rotational barriers (or looseness/tightness of transition states), which lead to isotope-competitive reactions in dechlorination and thereby inverse Cl-KIEs. It is concluded that the Cl-KIEs may depend on critical energies, bond strengths, available internal energies, and transition state looseness/tightness. The findings of this study yield new insights into the fundamentals of Cl-KIEs of organochlorines during CID and may be conducive to elucidating the underlying mechanisms of KIEs in collision-induced and photo-induced reactions in the actual world.

15.
ACS Omega ; 5(15): 8496-8507, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32337410

RESUMEN

H-Abstraction reactions occurring during electron impact ionization processes in electron ionization mass spectrometry (EI-MS) are a long-standing and crucial topic in MS research. Yet, some critical relevant mechanisms are controversial and ambiguous, and information about the EI-induced H-abstraction reactions of halogenated organic compounds (HOCs) is completely in the dark. This study provides a systematic investigation of H-abstraction reactions of HOCs taking place in the EI source using 13C6-hexachlorobenzene (13C6-HCB) and 13C6-hexabromobenzene (13C6-HBB) as exemplary compounds by gas chromatography (GC)-high-resolution mass spectrometry (GC-HRMS). The H-abstraction efficiencies were evaluated with the MS signal intensity ratios of ions with H-abstraction relative to the corresponding original ions (without H-abstraction). Ion source temperatures, EI energies, and numbers of heavy isotope atoms (37Cl or 81Br) of isotopologues were investigated in terms of their effects on the H-abstraction efficiencies. The H-abstraction efficiencies of individual isotopologues generally decreased from the first to the last isotopologues of respective ions, and those of individual ions were different from each other, with the highest values of 0.017 and 0.444 for 13C6-HCB and 13C6-HBB, respectively. The overall H-abstraction efficiencies involving all measured ions of 13C6-HCB and 13C6-HBB were 0.004 and 0.128, respectively. With increasing ion source temperatures, the H-abstraction efficiencies first increased to a summit and then began to linearly decrease. EI energies and emission currents could impact the H-abstraction efficiencies but showed no certain tendency. The H-abstraction reactions were inferred to belong to ion-molecule reactions, and the siloxanes bleeding from the GC column might be a hydrogen source. Some strategies were proposed for eliminating or alleviating the interference triggered by the H-abstraction reactions in EI-MS in identification of halogenated organic pollutants (HOPs). Our findings provide a better understanding of the EI-induced H-abstraction reactions of HOCs and may benefit the identification of HOPs in environmental analysis, especially for novel HOPs.

16.
RSC Adv ; 10(23): 13749-13758, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35492996

RESUMEN

Revelation of chlorine and bromine isotope effects in fragmentation is crucial for compound-specific isotope analysis of chlorine/bromine (CSIA-Cl/Br) using gas chromatography-electron ionization mass spectrometry (GC-EI-MS), but theoretical fundamentals of the isotope effects remain unclear. Herein, this study provides a theoretical basis for elucidating the details and implications of chlorine and bromine isotope effects occurring in dehalogenation reactions in EI-MS. Inter-ion and intra-ion isotope effects can occur in dehalogenation reactions in EI-MS, and affect chlorine/bromine isotope ratios. In a dehalogenation reaction, inter-ion isotope effects increase the isotope ratio of a precursor ion but decrease that of its product ion. On the other hand, intra-ion isotope effects can only affect (increase) the isotope ratio of a product ion, and have no effect on its precursor ion. The chlorine/bromine isotopologue distributions of ions measured by EI-MS are deduced to be non-binomial (nonrandom), regardless of the initial isotopologue distributions prior to fragmentation. The bulk chlorine/bromine isotope ratio of an ion cannot be exactly achieved with a calculation scheme using an arbitrary pair or pairs of neighboring chlorine/bromine isotopologues, but can be calculated with complete isotopologues of the ion. The isotope ratio of a compound calculated with a pair/pairs of neighboring isotopologues could not accurately reflect the trueness, even though it has been calibrated with external isotopic standard(s), due to different isotopologue distributions of the analyte and external isotopic standard(s). The conclusions derived from theoretical derivation have been experimentally proven with the isotopically distinct standards of tetrachloroethylene and trichloroethylene from different manufacturers. The findings of this study are conducive to CSIA-Cl/Br using GC-EI-MS to obtain high-quality data, and provide new insights into the actual chlorine/bromine isotopologue distributions of chlorinated/brominated organic compounds.

17.
Environ Toxicol Chem ; 39(2): 343-351, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31610611

RESUMEN

Tissue distributions and body-size dependent and species-specific bioaccumulation of 12 organic ultraviolet absorbents (UVAs) were investigated in 9 species of wildlife freshwater fish from the Pearl River catchment, South China. The concentrations of the 12 UVAs were from 109 to 2320 ng/g lipid weight in the fish tissue samples. The UVAs 2-hydroxy-4-methoxybenzophenone (BP-3), octocrylene (OCR), UV531, and 5 benzotriazole UV stabilizers (UVP, UV329, UV234, UV328, and UV327) were detected in more than half of the fish tissue samples. The UVA UV531 showed an obvious potential for bioaccumulation in the wild freshwater fish, with an estimated bioaccumulation factor (log BAF) and a biota-sediment accumulation factor (BSAF) of 4.54 ± 0.55 and 4.88 ± 6.78, respectively. Generally, liver (989 ± 464 ng/g lipid wt) contained the highest level of UVAs, followed in decreasing order by belly fat (599 ± 318 ng/g lipid wt), swimming bladder (494 ± 282 ng/g lipid wt), dorsal muscle (470 ± 240 ng/g lipid wt), and egg (442 ± 238 ng/g lipid wt). The bioaccumulation of UVAs in the freshwater wild fish was species specific and compound dependent. Bottom-dwelling detritus-ingesting omnivorous fish contained obviously higher UVA concentrations, suggesting that detritus/sediment ingestion is a significant pathway for exposure of the wild freshwater fish to the UVAs. The UVAs UV531 and BP-3 demonstrated a potential for growth dilution. Metabolism might play a significant role in elimination of the UVAs in the fish tissues, with the highest rate of metabolism in the liver. The UVAs did not demonstrate obvious trophic magnification in the freshwater ecosystem of the Pearl River catchment. More research is warranted to elucidate maternal transfer of the UVAs. Environ Toxicol Chem 2020;39:343-351. © 2019 SETAC.


Asunto(s)
Bioacumulación , Monitoreo del Ambiente/métodos , Peces/metabolismo , Ríos/química , Protectores Solares/análisis , Contaminantes Químicos del Agua/análisis , Animales , Animales Salvajes/metabolismo , Biota/efectos de los fármacos , Tamaño Corporal , China , Ecosistema , Peces/genética , Protectores Solares/metabolismo , Distribución Tisular , Contaminantes Químicos del Agua/metabolismo
18.
Environ Pollut ; 255(Pt 2): 113162, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31546079

RESUMEN

Hexa-mix-chlorinated/brominated benzenes (HXBs), a group of newly found analogues of hexachlorobenzene (HCB) and hexabromobenzene (HBB), may exhibit similar environmental risks and toxicities as HCB and HBB, and therefore possess high interests in environmental and toxicological research. Yet information regarding HXBs in the environment remains scarce. In this study, we developed an isotope dilution method for quantitative and semiquantitative determination of five HXBs in fly ash, soil and air using gas chromatography high resolution mass spectrometry (GC-HRMS) in multiple ion detection mode. The samples were Soxhlet-extracted and purified with multilayer composite silica gel-alumina columns, followed by GC-HRMS detection. Identification of HXBs was conducted by the comparison between theoretical and detected mass spectra using paired-samples T test and cosine similarity analysis. Two HXBs (C6BrCl5 and C6Br4Cl2) with reference standards were quantitatively determined while the rest three (C6Br2Cl4, C6Br3Cl3 and C6Br5Cl) without reference standards were semiquantitatively analyzed by sharing the calibration curves of C6BrCl5 and C6Br4Cl2 in cooperation with isotopologue distribution computation. The accuracies for C6BrCl5 and C6Br4Cl2 were 87.3-107.8% with relative standard deviations (RSD) of 2.8-5.0%. The method limits of quantification of the HXBs were 0.10 ng/g in fly ash and soil samples and 0.09 pg/m3 in ambient air samples. The recoveries ranged from 42.7% to 102.1% with RSD of 3.7-13.9%. This method has been successfully applied to the analysis of the HXBs in the environmental samples. The total concentrations of HXBs in the fly ash, soil and ambient air samples were 19.48 ng/g, 10.44 ng/g and 5.13 pg/m3, respectively, which accounted for 10.6%, 0.4% and 10.8% of the corresponding total concentrations of HCB and HBB. This study provides a reference method for quantitative and/or semiquantitative analyses of novel mix-halogenated organic compounds, and sheds light on the full picture of HXBs pollution in the environment.


Asunto(s)
Benceno/análisis , Ceniza del Carbón/análisis , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Halogenación , Hexaclorobenceno/análisis , Hexosaminidasa A , Suelo/química
19.
J Chromatogr A ; 1603: 278-287, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31208793

RESUMEN

Revealing fractionations of chlorine and bromine isotope in electron ionization mass spectrometry (EI-MS) is crucial for accurate compound-specific isotope analysis of chlorine/bromine (CSIA-Cl/Br) for halogenated organic compounds (HOCs) using gas chromatography EI-MS (GC-EI-MS). This study investigated chlorine/bromine isotope fractionation of 12 organochlorines and 5 organobromines in EI-MS using gas chromatography-high resolution mass spectrometry. The observed isotope fractionations were evaluated with relative variation of chlorine/bromine isotope ratios (Δ37Cl or Δ81Br) between precursor ions and their product ions. All the 17 HOCs exhibited significant isotope fractionations with varied modes and magnitudes depending on compound and EI energy. The magnitudes of the observed isotope fractionations were extremely large in contrast to those in in-solution dehalogenation reactions, showing the Δ37Cl and Δ81Br values within the ranges of -149.2 to 292.0‰ and -362.2 to 546.2‰, respectively. Inter-ion and intra-ion isotope fractionations counteractively influenced the measured chlorine/bromine isotope ratios of individual dehalogenation product ions, whereas only the former could affect (enhance) the measured isotope ratios of molecular ions. The magnitudes of inter-ion isotope fractionation were generally lower than those of intra-ion isotope fractionation for most HOCs (11/17). Stable EI energy and isotope-ratio calculation using complete chlorine/bromine isotopologues of individual molecular ions help to obtain CSIA-Cl/Br data with high precision and accuracy. The results of this study could facilitate exploration of chlorine and bromine isotope fractionations of HOCs during dehalogenation in such conditions as photoinduced dehalogenation, and further elucidate relevant dehalogenation pathways in light of reaction mechanisms revealed by CSIA data.


Asunto(s)
Bromo/química , Fraccionamiento Químico/métodos , Cloro/química , Electrones , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidrocarburos Halogenados/química , Iones , Isótopos/análisis
20.
Environ Toxicol Chem ; 38(7): 1504-1513, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30953377

RESUMEN

Freshwater systems are an important source and vector of plastic debris found in oceans. However, plastic debris in freshwater organisms has not been well studied. The occurrence, characterization, polymer composition, and seasonal and spatial distribution of plastic debris were investigated in 9 species of wild freshwater fish from the Pearl River catchment, south China. Approximately 50% of the total fish (n = 279) belonging to 9 species were found to ingest plastic debris with an average abundance of 7.0 ± 23.8 items/individual, indicating wide plastic contamination in the Pearl River catchment. Plastic debris were predominantly transparent or white in color, fibers or fragments in shape, and polyethylene, polypropylene, ethylene-propylene copolymer (PE-PP), and polyethylene terephthalate (PET) in polymer composition. A species-specific distribution of the plastic debris was observed in terms of abundance, shape, and polymer composition. Redbelly tilapia had the highest (27.4 ± 54.0 items/individual), whereas common carp had the lowest (0.2 ± 0.4 items/individual) abundance of the plastic debris in their gastrointestinal tracts. Fibers of PET were predominant in the freshwater species except in barbel chubs, which had mostly PE-PP fragments. Omnivores and bottom-dwellers were more likely to ingest plastic debris. Seasonal variation was observed, with generally higher abundance of plastic debris in fish collected in the dry season than in the wet season. Environ Toxicol Chem 2019;38:1504-1513. © 2019 SETAC.


Asunto(s)
Plásticos/química , Ríos/química , Tilapia/metabolismo , Animales , Monitoreo del Ambiente , Tracto Gastrointestinal/química , Tracto Gastrointestinal/metabolismo , Plásticos/metabolismo , Polietileno/química , Polietileno/metabolismo , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Polímeros/química , Polímeros/metabolismo , Estaciones del Año , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...