Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroimage ; 298: 120788, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147295

RESUMEN

The accomplishment of interpersonal sensorimotor synchronization is a challenging endeavor because it requires the achievement of a balance between accurate temporal control within individuals and smooth communication between them. This raises a critical question: How does the brain comprehend and process the perceptual information of others to guarantee accurate temporal control of action goals in a social context? A joint synchronization - continuation tapping task was conducted together with varying relative phases (0°/180°) and intervals of tempos (400 ms/800 ms/1600 ms) while neural data was collected using fNIRS (functional near-infrared spectroscopy). Individuals showed better behavioral performance and greater interpersonal brain synchronization(IBS) in the left dorsolateral prefrontal cortex at alternated condition (180° relative phase) compared to symmetric condition (0° relative phase), suggesting that the individual can better maintain behavioral performance and show improved IBS when the partner taps between the individual's gaps. Meanwhile, in most levels of alternated condition, IBS is inversely proportional to interference from partner, implying the counteraction of IBS against interference from others. In addition, when the interval of tempo was 1600 ms, behavioral performance showed a sharp decline, accompanied by a decrease in IBS, reflecting that IBS in SMS reflects effective information exchange between individuals rather than ineffective interference with each other. This study provides insight into the mechanisms underlying sensorimotor synchronization between individuals.


Asunto(s)
Espectroscopía Infrarroja Corta , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Desempeño Psicomotor/fisiología , Relaciones Interpersonales , Interacción Social , Corteza Prefontal Dorsolateral/fisiología , Corteza Prefontal Dorsolateral/diagnóstico por imagen , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen
2.
Front Behav Neurosci ; 13: 13, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809135

RESUMEN

Cognitive impairment contributes to errors in different tasks. Poor attention and poor cognitive control are the two neural mechanisms for performance errors. A few studies have been conducted on the error mechanism of working memory. It is unclear whether the changes in memory updating, attention, and cognitive control can cause errors and, if so, whether they can be probed at the same time in one single task. Therefore, this study analyzed event-related potentials in a two-back working memory task. A total of 40 male participants finished the task. The differences between the error and the correct trials in amplitudes and latencies of N1, P2, N2, and P3 were analyzed. The P2 and P3 amplitudes decreased significantly in the error trials, while the N2 amplitude increased. The results showed that impaired attention, poor memory updating, and impaired cognitive control were consistently associated with the error in working memory. Furthermore, the results suggested that monitoring the neurophysiological characteristics associated with attention and cognitive control was important for studying the error mechanism and error prediction. The results also suggested that the P3 and N2 amplitudes could be used as indexes for error foreshadowing.

3.
Front Behav Neurosci ; 13: 277, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920583

RESUMEN

Few studies exist regarding the mechanism prior to response by which cognitive impairment may induce error in a single long-lasting task. The present study intends to clarify the changes in cognition at the electrophysiological level. Changes in amplitude and latency of N1, P2, N2, and P3 components of event-related potentials (ERPs) were analyzed for error and correct trials during normal and fatigue. Twenty-nine participants had to perform a 2-back working memory (WM) task for 100 min. The first 10 min and the last 10 min of the task were used as the normal state and fatigue state of the participant, respectively. EEG data were obtained from the first 10-min period and the final 10-min period. The results revealed smaller P3 and P2 amplitudes and longer P2 and N2 latency in the final 10-min which was after a long-lasting time task. Moreover, smaller P3 and P2 amplitudes but larger N2 amplitudes were observed in error trials for both states. Our results indicated that: (1) long lasting involvement in a cognitive task had a detrimental effect on attention, memory updating and cognitive control; and (2) impaired attention, impairments in memory updating and cognitive control were related to task errors. Our results imply that several impaired cognitive processes were consistently associated with the error and the altered ERP represents the neural patterns prior to error response in mental fatigue state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA