Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 276: 116289, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570269

RESUMEN

The transmission of manure- and wastewater-borne antibiotic-resistant bacteria (ARB) to plants contributes to the proliferation of antimicrobial resistance in agriculture, necessitating effective strategies for preventing the spread of antibiotic resistance genes (ARGs) from ARB in the environment to humans. Nanomaterials are potential candidates for efficiently controlling the dissemination of ARGs. The present study investigated the abundance of ARGs in hydroponically grown garlic (Allium sativum L.) following nano-CeO2 (nCeO2) application. Specifically, root exposure to nCeO2 (1, 2.5, 5, 10 mg L-1, 18 days) reduced ARG abundance in the endosphere of bulbs and leaves. The accumulation of ARGs (cat, tet, and aph(3')-Ia) in garlic bulbs decreased by 24.2-32.5 % after nCeO2 exposure at 10 mg L-1. Notably, the lignification extent of garlic stem-disc was enhanced by 10 mg L-1 nCeO2, thereby accelerating the formation of an apoplastic barrier to impede the upward transfer of ARG-harboring bacteria to garlic bulbs. Besides, nCeO2 upregulated the gene expression related to alliin biosynthesis and increased allicin content by 15.9-16.2 %, promoting a potent antimicrobial defense for reducing ARG-harboring bacteria. The potential exposure risks associated with ARGs and Ce were evaluated according to the estimated daily intake (EDI). The EDI of ARGs exhibited a decrease exceeding 95 %, while the EDI of Ce remained below the estimated oral reference dose. Consequently, through stimulating physical and chemical defenses, nCeO2 contributed to a reduced EDI of ARGs and Ce, highlighting its potential for controlling ARGs in plant endosphere within the framework of nano-enabled agrotechnology.


Asunto(s)
Cerio , Ajo , Ajo/genética , Ajo/efectos de los fármacos , Cerio/toxicidad , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Hojas de la Planta , Antibacterianos/farmacología , Genes Bacterianos , Farmacorresistencia Bacteriana/genética
2.
Sci Total Environ ; 927: 171976, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547984

RESUMEN

The associated benefits and potential environmental risks of nanopesticides on plant and soil health, particularly in comparison with traditional pesticides, have not been systematically elucidated. Herein, we investigated the impacts of the as-synthesized nano-acetamiprid (Nano-Ace, 20 nm) at low (10 mg/L), medium (50 mg/L), high (100 mg/L) doses and the corresponding high commercial acetamiprid (Ace, 100 mg/L) on the physiological and metabolic response of faba bean (Vicia faba L.) plants, as well as on rhizosphere bacterial communities and functions over short-, medium- and long-term exposures. Overall, Nano-Ace exposure contributed to basic metabolic pathways (e.g., flavonoids, amino acids, TCA cycle intermediate, etc.) in faba bean roots across the whole exposure period. Moreover, Nano-Ace exposure enriched rhizosphere beneficial bacteria (e.g., Streptomyces (420.7%), Pseudomonas (33.8%), Flavobacterium (23.3%)) and suppressed pathogenic bacteria (e.g., Acidovorax (44.5%)). Additionally, Nano-Ace exposure showed a trend of low promotion and high inhibition of soil enzyme activities (e.g., invertase, urease, arylsulfatase, alkaline phosphatase) involved in soil C, N, S, and P cycling, while the inhibition was generally weaker than that of conventional Ace. Altogether, this study indicated that the redox-responsive nano-acetamiprid pesticide possessed high safety for host plants and soil health.


Asunto(s)
Neonicotinoides , Raíces de Plantas , Microbiología del Suelo , Contaminantes del Suelo , Vicia faba , Vicia faba/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Raíces de Plantas/efectos de los fármacos , Suelo/química , Rizosfera , Plaguicidas/toxicidad , Nanopartículas/toxicidad
3.
J Agric Food Chem ; 72(7): 3397-3405, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38335532

RESUMEN

The continued acquisition and propagation of antibiotic resistance genes (ARGs) in the environment confound efforts to manage the global rise in antibiotic resistance. Here, CRISPR-Cas9/sgRNAs carried by nitrogen-doped carbon dots (NCDs) were developed to precisely target multi-"high-risk" ARGs (tet, cat, and aph(3')-Ia) commonly detected in the environment. NCDs facilitated the delivery of Cas9/sgRNAs to Escherichia coli (E. coli) without cytotoxicity, achieving sustained elimination of target ARGs. The elimination was optimized using different weight ratios of NCDs and Cas9 protein (1:1, 1:20, and 1:40), and Cas9/multi sgRNAs were designed to achieve multi-cleavage of ARGs in either a single strain or mixed populations. Importantly, NCDs successfully facilitated Cas9/multi sgRNAs for resensitization of antibiotic-resistant bacteria in soil (approaching 50%), whereas Cas9/multi sgRNAs alone were inactivated in the complex environment. This work highlights the potential of a fast and precise strategy to minimize the reservoir of antibiotic resistance in agricultural system.


Asunto(s)
Antibacterianos , Sistemas CRISPR-Cas , Antibacterianos/farmacología , ARN Guía de Sistemas CRISPR-Cas , Escherichia coli/genética
4.
Food Chem ; 440: 138224, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134824

RESUMEN

Application of nanomaterials (NMs) in agriculture poses an ingestion risk to humans and may affect the digestive process. Different fates of NMs with differential charges in the gastrointestinal tract should be considered. In this study, the interaction between three carbon dots (CDs) carried with different functional groups (-NH2, -OH, and -COOH) and pepsin was analyzed through an in vitro digestion model. The results showed that CDs significantly reduced pepsin activity. Among them, CDs-NH2 had the greatest effect, following by CDs-OH, and CDs-COOH. Besides, molecular docking demonstrated the specific binding site of CDs to pepsin, while the most stable binding energy (-8.10 kcal/mol) was formed between CDs-NH2 and pepsin. Further, CDs formed a nanomaterial-protein crown structure with pepsin. The present study enriches the functional group properties of CDs in the digestion and provides new ideas for the potential human health of NMs.


Asunto(s)
Pepsina A , Puntos Cuánticos , Humanos , Pepsina A/química , Carbono/química , Simulación del Acoplamiento Molecular , Sitios de Unión , Digestión , Puntos Cuánticos/química
5.
Sci Total Environ ; 901: 166500, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37619720

RESUMEN

To sustainably feed the growing global population, it is essential to increase crop yields on limited land while reducing the use of fertilizers and agrochemicals. The rhizosphere regulation shows significant potential to address this challenge. Here, foliar applied doping of nitrogen in carbon dots (N-CDs) entered maize leaves, and were transported to the stems and roots. The internalized N-CDs significantly increased the biomass (26.4-93.8%) and photosynthesis (17.0-20.3 %) of maize seedling during the three-week application of N-CDs, providing the substrate for tricarboxylic acid cycle (TCA) in shoots and roots. Correspondingly, more organic acids involved in TCA cycle, such as citric acid (14.0-fold), succinic acid (4.4-fold) and malic acid (3.4-fold), were synthesized and then secreted into rhizosphere after exposed to N-CDs for one day. As the exposure time increased, greater secretion of above organic acids by the roots was induced. However, no significant change was observed in the relative abundance of rhizobacteria after foliar application with N-CDs for one day. After one week, the relative abundances of Azotobacter, Bacillus, Lysobacter, Mucilaginibacter, and Sphingomonas increased by 0.8-3.8 folds. The relative abundance of more beneficial rhizobacteria (Sphingomonas, Lysobacter, Rhizobium, Azotobacter, Pseudomonas, Mucilaginibacter and Bacillus) enriched by 0.3-6.0 folds after two weeks, and Sphingomonas, Flavisolibacter and Bacillus improved by 0.6-3.2 folds after three weeks. These dynamic changes suggested that N-CDs initiate the synthesis and secretion of organic acids and then recruited beneficial rhizobacteria. The hierarchical partitioning analysis further indicated that N-CDs-induced secretion of organic acids from the roots was the main drivers of rhizobacteria community dynamics. The differential microbes altered by N-CDs were mainly involved in nitrogen (N) and phosphorus (P) cycles, which are beneficial for N and P uptake, and maize growth. These results provide insights into understanding the rhizosphere regulation of nanomaterials to improve plant productivity and nutrient-use efficiency.

6.
J Hazard Mater ; 459: 132071, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37487331

RESUMEN

Multiple water-chemistry factors determine nanoplastics aggregation and thus change their bioavailability and ecological risks in natural aquatic environments. However, the dominant factors and their interactive mechanisms remain elusive. In this study, polystyrene nanoplastics (PSNPs) showed greater colloidal stability in Li Lake water compared to ultrapure water. The RDA and PARAFAC results suggested that dissolved organic carbon, humic acid (HA) in particular, Ca2+, and pH are critical factors influencing PSNPs aggregation. Batch experiments showed that the critical coagulation concentration (CCC) of PSNPs was increased with pH increase; HA increased the CCC of PSNPs in NaCl by 2.6-fold but decreased that in CaCl2 by 1.8-fold. Moreover, cations increased the adsorption of HA on PSNPs. The DFT results suggested that HA-cations complexes (EAE = -1.10 eV and -0.51 eV for HA-Ca2+ and HA-Na+, respectively) but not HA alone (EAE = -0.33 eV) are the main scenarios for their adsorption on PSNPs, and a cation-π mechanism between PSNPs and HA-cations complexes dominates PSNPs aggregation in this scenario. The findings are significant for better understanding the environmental process and fate of nanoplastics in aquatic environments. ENVIRONMENTAL IMPLICATION: Nanoplastics are kinds of emerging contaminants. Nanoplastic aggregation determines their bioavailability and toxic risks to ecological health. Herein, the hydrodynamic sizes of PSNPs in local Li Lake water was tested and a redundancy analysis was performed to examine the key water-chemistry factors driving PSNPs aggregation. Moreover, the mechanisms in PSNPs aggregation driven by multiple dominant water-chemistry factors including cations, pH, and DOC were firstly unveiled by combining experimental characterization and theoretical computations. This work improves our understanding of the environmental fate of nanoplastics and provides a theoretical basis for the risk assessment and control of nanoplastics in real aquatic environments.

7.
ACS Nano ; 17(5): 4871-4885, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36871293

RESUMEN

Crop disease represents a serious and increasing threat to global food security. Lanthanum oxide nanomaterials (La2O3 NMs) with different sizes (10 and 20 nm) and surface modifications (citrate, polyvinylpyrrolidone [PVP], and poly(ethylene glycol)) were investigated for their control of the fungal pathogen Fusarium oxysporum (Schl.) f. sp cucumerinum Owen on six-week-old cucumber (Cucumis sativus) in soil. Seed treatment and foliar application of the La2O3 NMs at 20-200 mg/kg (mg/L) significantly suppressed cucumber wilt (decreased by 12.50-52.11%), although the disease control efficacy was concentration-, size-, and surface modification-dependent. The best pathogen control was achieved by foliar application of 200 mg/L PVP-coated La2O3 NMs (10 nm); disease severity was decreased by 67.6%, and fresh shoot biomass was increased by 49.9% as compared with pathogen-infected control. Importantly, disease control efficacy was 1.97- and 3.61-fold greater than that of La2O3 bulk particles and a commercial fungicide (Hymexazol), respectively. Additionally, La2O3 NMs application enhanced cucumber yield by 350-461%, increased fruit total amino acids by 295-344%, and improved fruit vitamin content by 65-169% as compared with infected controls. Transcriptomic and metabolomic analyses revealed that La2O3 NMs: (1) interacted with calmodulin, subsequently activating salicylic acid-dependent systemic acquired resistance; (2) increased the activity and expression of antioxidant and related genes, thereby alleviating pathogen-induced oxidative stress; and (3) directly inhibited in vivo pathogen growth. The findings highlight the significant potential of La2O3 NMs for suppressing plant disease in sustainable agriculture.


Asunto(s)
Cucumis sativus , Cucumis sativus/microbiología , Cucumis sativus/fisiología , Resistencia a la Enfermedad , Óxidos , Suelo/química , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
8.
Environ Pollut ; 299: 118900, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35085650

RESUMEN

Salinity stress seriously threatens agricultural productivity and food security worldwide. This work reports on the mechanisms of alleviating salinity stress by cerium oxide nanomaterials (CeO2 NMs) in maize (Zea may L.). Soil-grown maize plants were irrigated with deionized water or 100 mM NaCl solution as the control or the salinity stress treatment. CeO2 NMs (1, 5, 10, 20, and 50 mg/L) with antioxidative enzyme mimicking activities were foliarly applied on maize leaves for 7 days. The morphological, physiological, biochemical, and transcriptomic responses of maize were evaluated. Specifically, salinity stress significantly reduced 59.0% and 63.8% in maize fresh and dry biomass, respectively. CeO2 NMs at 10, 20, and 50 mg/L improved the salt tolerance of maize by 69.5%, 69.1%, and 86.8%, respectively. Also, 10 mg/L CeO2 NMs maintained Na+/K+ homeostasis, enhanced photosynthetic efficiency by 30.8%, and decreased reactive oxygen species (ROS) level by 58.5% in salt-stressed maize leaves. Transcriptomic analysis revealed that the antioxidative defense system-related genes recovered to the normal control level after CeO2 NMs application, indicating that CeO2 NMs eliminated ROS through their intrinsic antioxidative enzyme properties. The down-regulation of genes related to lignin synthesis in the phenylpropanoid biosynthesis pathway accelerated leaf cell elongation. In addition, CeO2 NMs increased the rhizobacteria richness and diversity through the increment of carbon source in root exudates and improved the abundance of halotolerant plant growth-promoting rhizobacteria (HT-PGPR). Importantly, the yield of salt-stressed maize was enhanced by 293.3% after 10 mg/L CeO2 NMs foliar application. These results will provide new insights for the application of CeO2 NMs in management to reduce the salinity-caused crop loss.


Asunto(s)
Nanoestructuras , Zea mays , Cerio , Homeostasis , Especies Reactivas de Oxígeno , Salinidad , Estrés Salino , Zea mays/fisiología
9.
Chem Commun (Camb) ; 56(86): 13125-13128, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33005910

RESUMEN

A highly enantioselective Pd/Xiang-Phos-catalyzed carbohetero-functionalization of norbornene is described, giving a direct access to various chiral norbornane-fused dihydrofurans and dihydro-pyrroles. This synthetic methodology provides the first example of asymmetric carboetherification of norbornene, and also tolerates norbornadiene well.

10.
Chem Sci ; 11(24): 6283-6288, 2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32953024

RESUMEN

A mild and practical Pd/Xiang-Phos-catalyzed enantioselective intermolecular carboheterofunctionalization reaction of 2,3-dihydrofurans is developed, leading to various optically active fused furoindolines and tetrahydrofurobenzofurans. The key to this transformation is employing two newly modified N-Me-Xiang-Phos ligands ((S, R S)- N-Me-X4/X5) as chiral ligands under mild conditions. Moreover, this synthetic methodology can be efficiently applied to a variety of complex polysubstituted heterocycles with high chemo-, regio-, and enantio-selectivities via introducing diverse substituents on furan rings, which were hard to access by other routes.

11.
Chem Sci ; 8(6): 4660-4665, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28936335

RESUMEN

The enantioselective construction of densely functionalized cyclopentene bearing contiguous three stereocenters has been a challenging task in organic synthesis. Herein, we present a phoshine-catalyzed highly regio-, diastereo- and enantioselective [3 + 2] cycloaddition of γ-substituted allenoates with ß-perfluoroalkyl enones, delivering a wide range of densely functionalized perfluoroalkylated cyclopentenes with three contiguous chiral stereocenters.

12.
Org Lett ; 19(7): 1710-1713, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28328230

RESUMEN

The development of electron-demand disfavored [4 + 2] cycloaddition of two electron-deficient reacting partners poses a considerable challenge. An enantioselective aza-[4 + 2] cycloaddition of electron-deficient N-sulfonyl-1-aza-1,3-dienes is possible with vinyl ketones via phosphine catalysis, which provides facile access to a wide range of enantioenriched trifluoromethylated tetrahydropyridines in up to 97% yield with 97% ee and >20:1 dr. The mechanistic study indicated that this cycloaddition proceeds via a tandem intermolecular aza-Rauhut-Currier/intramolecular aza-Michael addition reaction.

13.
Chem Commun (Camb) ; 52(48): 7612-5, 2016 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-27225510

RESUMEN

The enantioselective intermolecular cross Rauhut-Currier reaction of acrolein with active olefins has been a long-standing challenge because of the competitive MBH reaction and polymerization. Herein a highly enantioselective intermolecular cross Rauhut-Currier reaction of acrolein with 3-acyl acrylates and 2-ene-1,4-diones, which is enabled by newly designed Peng-Phos catalysts. This method is scalable and highly enantioselective (up to 96% ee). Several transformations of the R-C products are carried out to showcase the synthetic utility.

14.
Angew Chem Int Ed Engl ; 54(49): 14853-7, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26527108

RESUMEN

A novel type of highly efficient chiral sulfinamide bisphosphine catalysts (Wei-Phos) were developed. These could be easily prepared from commercially available starting materials. Wei-Phos has shown good performance in the very challenging intermolecular cross-Rauhut-Currier reactions of vinyl ketones and 3-acyl acrylates or 2-ene-1,4-diones, leading to the R-C products in high yields with up to 99% ee under 2.5-5 mol% catalyst loading. The highly regio- and enantio-selective cross-Rauhut-Currier reactions of 2-ene-1,4-diones and vinyl ketone have yet reported so far.

15.
Environ Sci Technol ; 48(15): 8905-10, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24956356

RESUMEN

The major drawback of aqueous alkanolamine-based CO2 capture processes is the high energy penalty for regeneration. To overcome this weakness, we studied the absorption of CO2 with amines dissolved in nonaqueous solvents. It was observed that triethylenetetramine (TETA) dissolved in ethanol produces a solid precipitate after absorption, which can then be easily separated and regenerated. As a comparison, a TETA/water solution does not form any precipitate after absorbing CO2. The TETA/ethanol solution offers several advantages for CO2 capture in absorption rate, absorption capacity, and absorbent regenerability. Both the rate and capacity of CO2 absorption with the TETA/ethanol solution were significantly higher than with a TETA/water solution, because ethanol not only promotes the solubility of CO2 in the liquid phase but also facilitates the chemical reaction between TETA and CO2. This approach was able to capture 81.8% of the absorbed CO2 in the solid phase as TETA-carbamate. In addition, results show that the decomposition of TETA-carbamate can be completed at 90 °C. Moreover, the cycling absorption/regeneration runs of the TETA/ethanol solution display a relatively stable absorption performance.


Asunto(s)
Dióxido de Carbono/aislamiento & purificación , Solventes/química , Trientina/química , Absorción Fisicoquímica , Dióxido de Carbono/química , Precipitación Química , Etanol/química , Transición de Fase , Soluciones , Agua/química
16.
Sci Rep ; 3: 2916, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24107974

RESUMEN

MIL-101(Cr) has drawn much attention due to its high stability compared with other metal-organic frameworks. In this study, three trace flue gas contaminants (H2O, NO, SO2) were each added to a 10 vol% CO2/N2 feed flow and found to have a minimal impact on the adsorption capacity of CO2. In dynamic CO2 regeneration experiments, complete regeneration occurred in 10 min at 328 K for temperature swing adsorption-N2-stripping under a 50 cm(3)/min N2 flow and at 348 K for vacuum-temperature swing adsorption at 20 KPa. Almost 99% of the pre-regeneration adsorption capacity was preserved after 5 cycles of adsorption/desorption under a gas flow of 10 vol% CO2, 100 ppm SO2, 100 ppm NO, and 10% RH, respectively. Strong resistance to flue gas contaminants, mild recovery conditions, and excellent recycling efficiency make MIL-101(Cr) an attractive adsorbent support for CO2 capture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...