Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Control Release ; 324: 545-559, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32504777

RESUMEN

The passive targeting via nanomedicine to pancreatic tumor microenvironment (TME) is identified as an optimized therapeutic strategy for pancreatic ductal adenocarcinoma (PDAC) because lacking specific biomarkers and the intractable anatomical position. Herein, an in vitro 3D PDAC model was set up to evaluate the regulation of extracellular matrix (ECM) by an intelligent gemcitabine@nanogel system (GEM@NGH). This GEM@NGH system consisting of a reduction-sensitive core, the payloads of gemcitabine, and the coronal of hyaluronidase arrayed on the cationic surface was fabricated to improve intratumoral penetration and antitumor efficacy. The physicochemical properties, reduction sensitivity, cellular biocompatibility and cytotoxicity, intracellular distribution and therapeutic effects were all evaluated. Particularly, the GEM@NGH system showed excellent ECM eradication and in vitro/vivo solid tumor penetration ability as evaluated by home-built equipment and in vitro 3D PDAC model, which confirmed that GEM@NGH could be disintegrated in the tumoral reductive cytoplasm after internalization and release gemcitabine to exhibit promoted cytotoxicity. In the in vivo therapy, GEM@NGH displayed the highest tumor growth inhibition in PANC-1 tumor-bearing mice with the remarkably increased tumor penetration ability by TME regulation. The results obtained in this study indicate that specifically regulating TME by a well-designed intelligent gemcitabine@nanogel is promising way for the pancreatic cancer therapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Ratones , Nanogeles , Neoplasias Pancreáticas/tratamiento farmacológico , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
2.
Virology ; 544: 1-11, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32174509

RESUMEN

The hepatitis E virus (HEV) ORF2 truncated recombinant proteins can self-assemble into virus-like particles (VLPs) and were used as models to investigate the HEV capsid assembly. However, the structural function of the ORF2 C-terminal domain (C52aa from aa 608 to aa 660) remains unclear. Herein, by analyzing a set of ORF2 truncated proteins expressed in Escherichia coli, we found that the highly conserved C-terminal cysteines play a crucial role in the oligomerization of the truncated ORF2 proteins and in their assembly into VLPs, through the formation of dimer-dimer disulfide bonds; and the treatment of native HEV particles with dithiothreitol (DTT) induced the disassembly of the viral capsid, suggesting that the disulfide bonding is required for stabilizing the native HEV capsid. The present study sheds light on the structural role of the C-terminal region of the HEV capsid protein and contributes to the full understating of the viral capsid assembly process.


Asunto(s)
Virus de la Hepatitis E/metabolismo , Proteínas Virales/genética , Ensamble de Virus/fisiología , Secuencia de Aminoácidos , Animales , Ditiotreitol/farmacología , Escherichia coli , Regulación Viral de la Expresión Génica , Virus de la Hepatitis E/genética , Proteínas Virales/química
3.
Front Chem ; 8: 599740, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33469525

RESUMEN

Objective: The aim of this study was to construct light and temperature dual-sensitive micellar carriers loaded with doxorubicin (DOX) and gold nanorods (DOX-GNRs-PNIPAM@PEG-PLA, DAPP) for melanoma therapy. Methods: The DAPP self-assembled using fine-tuned physicochemical properties in water. The DAPP structure, temperature- and photo-sensitivity, drug-release, in-vitro serum stability, and cytotoxicity against melanoma B16F10 cells were evaluated in detail. The corresponding in-vitro and in-vivo therapeutic mechanisms were then evaluated using a B16F10-melanoma bearing BALB/c nude mouse model (B16F10). Results: The light and temperature sensitive micellar drug-delivery system assembled from block copolymer and gold nanorods exhibited a narrow particle size and size distribution, good biocompatibility, well-designed photo-temperature conversion, controlled drug release, and high serum stability. Compared with the free DOX- and PBS-treated groups, the cell endocytosis-mediated cytotoxicity and intra-tumor accumulation of DAPP was markedly enhanced by the NIR-light exposure and induced potent in-vivo tumor inhibitory activity. Conclusion: The design of DAPP, a dual-functional micellar drug-delivery system with temperature- and light-sensitive properties, offers a new strategy for skin-cancer therapy with a potent therapeutic index.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA