Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5345, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937474

RESUMEN

Drug-tolerance has emerged as one of the major non-genetic adaptive processes driving resistance to targeted therapy (TT) in non-small cell lung cancer (NSCLC). However, the kinetics and sequence of molecular events governing this adaptive response remain poorly understood. Here, we combine real-time monitoring of the cell-cycle dynamics and single-cell RNA sequencing in a broad panel of oncogenic addiction such as EGFR-, ALK-, BRAF- and KRAS-mutant NSCLC, treated with their corresponding TT. We identify a common path of drug adaptation, which invariably involves alveolar type 1 (AT1) differentiation and Rho-associated protein kinase (ROCK)-mediated cytoskeletal remodeling. We also isolate and characterize a rare population of early escapers, which represent the earliest resistance-initiating cells that emerge in the first hours of treatment from the AT1-like population. A phenotypic drug screen identify farnesyltransferase inhibitors (FTI) such as tipifarnib as the most effective drugs in preventing relapse to TT in vitro and in vivo in several models of oncogenic addiction, which is confirmed by genetic depletion of the farnesyltransferase. These findings pave the way for the development of treatments combining TT and FTI to effectively prevent tumor relapse in oncogene-addicted NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Farnesiltransferasa , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/metabolismo , Farnesiltransferasa/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Animales , Ratones , Dependencia del Oncogén/genética , Terapia Molecular Dirigida , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Oncogenes/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Quinolonas
2.
Front Immunol ; 13: 980539, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059552

RESUMEN

Strategies based on intracellular expression of artificial binding domains present several advantages over manipulating nucleic acid expression or the use of small molecule inhibitors. Intracellularly-functional nanobodies can be considered as promising macrodrugs to study key signaling pathways by interfering with protein-protein interactions. With the aim of studying the RAS-related small GTPase RHOA family, we previously isolated, from a synthetic phage display library, nanobodies selective towards the GTP-bound conformation of RHOA subfamily proteins that lack selectivity between the highly conserved RHOA-like and RAC subfamilies of GTPases. To identify RHOA/ROCK pathway inhibitory intracellular nanobodies, we implemented a stringent, subtractive phage display selection towards RHOA-GTP followed by a phenotypic screen based on F-actin fiber loss. Intracellular interaction and intracellular selectivity between RHOA and RAC1 proteins was demonstrated by adapting the sensitive intracellular protein-protein interaction reporter based on the tripartite split-GFP method. This strategy led us to identify a functional intracellular nanobody, hereafter named RH28, that does not cross-react with the close RAC subfamily and blocks/disrupts the RHOA/ROCK signaling pathway in several cell lines without further engineering or functionalization. We confirmed these results by showing, using SPR assays, the high specificity of the RH28 nanobody towards the GTP-bound conformation of RHOA subfamily GTPases. In the metastatic melanoma cell line WM266-4, RH28 expression triggered an elongated cellular phenotype associated with a loss of cellular contraction properties, demonstrating the efficient intracellular blocking of RHOA/B/C proteins downstream interactions without the need of manipulating endogenous gene expression. This work paves the way for future therapeutic strategies based on protein-protein interaction disruption with intracellular antibodies.


Asunto(s)
Anticuerpos de Dominio Único , Actinas/metabolismo , Guanosina Trifosfato , Transducción de Señal , Anticuerpos de Dominio Único/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas ras/metabolismo
3.
Anal Chem ; 93(15): 6104-6111, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33825439

RESUMEN

As key regulators of the actin cytoskeleton, RHO GTPase expression and/or activity are deregulated in tumorigenesis and metastatic progression. Nevertheless, the vast majority of experiments supporting this conclusion was conducted on cell lines but not on human tumor samples that were mostly studied at the expression level only. Up to now, the activity of RHO proteins remains poorly investigated in human tumors. In this article, we present the development of a robust nanobody-based ELISA assay, with a high selectivity that allows an accurate quantification of RHO protein GTP-bound state in the nanomolar range (1 nM; 20 µg/L), not only in cell lines after treatment but also in tumor samples. Of note, we present here a fine analysis of RHOA-like and RAC1 active state in tumor samples with the most comprehensive study of RHOA-GTP and RHOC-GTP levels performed on human breast tumor samples. We revealed increased GTP-bound RHOA and RHOC protein activities in tumors compared to normal tissue counterparts, and demonstrated that the RHO active state and RHO expression are two independent parameters among different breast cancer subtypes. Our results further highlight the regulation of RHO protein activation in tumor samples and the relevance of directly studying RHO GTPase activities involvement in molecular pathways.


Asunto(s)
Neoplasias de la Mama , Proteína de Unión al GTP rhoA , Proteína rhoC de Unión a GTP , Transformación Celular Neoplásica , Femenino , Guanosina Trifosfato , Humanos , Proteína de Unión al GTP rhoA/metabolismo , Proteína rhoC de Unión a GTP/metabolismo
4.
Haematologica ; 106(2): 404-411, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31919089

RESUMEN

Severe combined immunodeficiencies (SCIDs) constitute a heterogeneous group of life-threatening genetic disorders that typically present in the first year of life. They are defined by the absence of autologous T cells and the presence of an intrinsic or extrinsic defect in the B-cell compartment. In three newborns presenting with frequent infections and profound leukopenia, we identified a private, heterozygous mutation in the RAC2 gene (p.G12R). This mutation was de novo in the index case, who had been cured by hematopoietic stem cell transplantation but had transmitted the mutation to her sick daughter. Biochemical assays showed that the mutation was associated with a gain of function. The results of in vitro differentiation assays showed that RAC2 is essential for the survival and differentiation of hematopoietic stem/progenitor cells. Therefore, screening for RAC2 gain-of-function mutations should be considered in patients with a SCID phenotype and who lack a molecular diagnosis.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Inmunodeficiencia Combinada Grave , Proteínas de Unión al GTP rac , Médula Ósea , Trastornos de Fallo de la Médula Ósea , Femenino , Mutación con Ganancia de Función , Humanos , Recién Nacido , Mutación , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/terapia , Proteína RCA2 de Unión a GTP
5.
Antibodies (Basel) ; 8(1)2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31544814

RESUMEN

RHO (Ras HOmologous) GTPases are molecular switches that activate, in their state bound to Guanosine triphosphate (GTP), key signaling pathways, which involve actin cytoskeleton dynamics. Previously, we selected the nanobody RH12, from a synthetic phage display library, which binds the GTP-bound active conformation of RHOA (Ras Homologous family member A). However, when expressed as an intracellular antibody, its blocking effect on RHO signaling led to a loss of actin fibers, which in turn affected cell shape and cell survival. Here, in order to engineer an intracellular biosensor of RHOA-GTP activation, we screened the same phage nanobody library and identified another RHO-GTP selective intracellular nanobody, but with no apparent toxicity. The recombinant RH57 nanobody displays high affinity towards GTP-bound RHOA/B/C subgroup of small GTPases in vitro. Intracellular expression of the RH57 allowed selective co-precipitation with the GTP-bound state of the endogenous RHOA subfamily. When expressed as a fluorescent fusion protein, the chromobody GFP-RH57 was localized to the inner plasma membrane upon stimulation of the activation of endogenous RHO. Finally, the RH57 nanobody was used to establish a BRET-based biosensor (Bioluminescence Resonance Energy Transfer) of RHO activation. The dynamic range of the BRET signal could potentially offer new opportunities to develop cell-based screening of RHOA subfamily activation modulators.

6.
PLoS One ; 10(9): e0137584, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26335690

RESUMEN

OBJECTIVE: CER-001 is a novel engineered HDL-mimetic comprised of recombinant human apoA-I and charged phospholipids that was designed to mimic the beneficial properties of nascent pre-ß HDL. In this study, we have evaluated the dose-dependent regulation of ABCA1 expression in vitro and in vivo in the presence of CER-001 and native HDL (HDL3). METHODS AND RESULTS: CER-001 induced cholesterol efflux from J774 macrophages in a dose-dependent manner similar to natural HDL. A strong down-regulation of the ATP-binding cassette A1 (ABCA1) transporter mRNA (- 50%) as well as the ABCA1 membrane protein expression (- 50%) was observed at higher doses of CER-001 and HDL3 compared to non-lipidated apoA-I. In vivo, in an apoE-/- mouse "flow cessation model," in which the left carotid artery was ligatured to induce local inflammation, the inhibition of atherosclerotic plaque burden progression in response to a dose-range of every-other-day CER-001 or HDL in the presence of a high-fat diet for two weeks was assessed. We observed a U-shaped dose-response curve: inhibition of the plaque total cholesterol content increased with increasing doses of CER-001 or HDL3 up to a maximum inhibition (- 51%) at 5 mg/kg; however, as the dose was increased above this threshold, a progressively less pronounced inhibition of progression was observed, reaching a complete absence of inhibition of progression at doses of 20 mg/kg and over. ABCA1 protein expression in the same atherosclerotic plaque was decreased by-45% and-68% at 50 mg/kg for CER-001 and HDL respectively. Conversely, a-12% and 0% decrease in ABCA1 protein expression was observed at the 5 mg/kg dose for CER-001 and HDL respectively. CONCLUSIONS: These data demonstrate that high doses of HDL and CER-001 are less effective at slowing progression of atherosclerotic plaque in apoE-/- mice compared to lower doses, following a U-shaped dose-response curve. A potential mechanism for this phenomenon is supported by the observation that high doses of HDL and CER-001 induce a rapid and strong down-regulation of ABCA1 both in vitro and in vivo. In conclusion, maximally efficient HDL- or CER-001-mediated cholesterol removal from atherosclerotic plaque is achieved by maximizing macrophage-mediated efflux from the plaque while minimizing dose-dependent down-regulation of ABCA1 expression. These observations may help define the optimal dose of HDL mimetics for testing in clinical trials of atherosclerotic burden regression.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Apolipoproteína A-I/farmacología , Regulación hacia Abajo/efectos de los fármacos , Lipoproteínas HDL/farmacología , Fosfolípidos/farmacología , Placa Aterosclerótica/prevención & control , Proteínas Recombinantes/farmacología , Transportador 1 de Casete de Unión a ATP/genética , Animales , Apolipoproteínas E/genética , Relación Dosis-Respuesta a Droga , Ratones , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo
7.
PLoS One ; 9(4): e95807, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24769858

RESUMEN

High-density lipoprotein (HDL) is known to protect against atherosclerosis by promoting the reverse cholesterol transport. A new pathway for the regulation of HDL-cholesterol (HDL-c) removal involving F1-ATPase and P2Y13 receptor (P2Y13R) was described in vitro, and recently in mice. However, the physiological role of F1-ATPase/P2Y13R pathway in the modulation of vascular pathology i.e. in the development of atherosclerotic plaques is still unknown. We designed a specific novel agonist (CT1007900) of the P2Y13R that caused stimulation of bile acid secretion associated with an increased uptake of HDL-c in the liver after single dosing in mice. Repeated dose administration in mice, for 2 weeks, stimulated the apoA-I synthesis and formation of small HDL particles. Plasma samples from the agonist-treated mice had high efflux capacity for mobilization of cholesterol in vitro compared to placebo group. In apoE-/- mice this agonist induced a decrease of atherosclerotic plaques in aortas and carotids. The specificity of P2Y13R pathway in those mice was assessed using adenovirus encoding P2Y13R-shRNA. These results demonstrate that P2Y13R plays a pivotal role in the HDL metabolism and could also be a useful therapeutic agent to decrease atherosclerosis. In this study, the up-regulation of HDL-c metabolism via activation of the P2Y13R using agonists could promote reverse cholesterol transport and promote inhibition of atherosclerosis progression in mice.


Asunto(s)
Aterosclerosis/metabolismo , HDL-Colesterol/sangre , HDL-Colesterol/metabolismo , Morfolinas/farmacología , Agonistas del Receptor Purinérgico P2/farmacología , Pirimidinas/farmacología , Receptores Purinérgicos P2/fisiología , Animales , Apolipoproteínas E/genética , Aterosclerosis/tratamiento farmacológico , Arterias Carótidas/efectos de los fármacos , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Evaluación Preclínica de Medicamentos , Células Hep G2 , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica/metabolismo , Agregación Plaquetaria/efectos de los fármacos
8.
Atherosclerosis ; 232(1): 110-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24401224

RESUMEN

OBJECTIVE: CER-001 is a novel engineered HDL-mimetic comprised of recombinant human apoA-I and phospholipids that was designed to mimic the beneficial properties of nascent pre-ß HDL. In this study, we have evaluated the capacity of CER-001 to perform reverse lipid transport in single dose studies as well as to regress atherosclerosis in LDLr(-/-) mice after short-term multiple-dose infusions. APPROACH AND RESULTS: CER-001 induced cholesterol efflux from macrophages and exhibited anti-inflammatory response similar to natural HDL. Studies with HUVEC demonstrated CER-001 at a concentration of 500 µg/mL completely suppressed the secretion of cytokines IL-6, IL-8, GM-CSF and MCP-1. Following infusion of CER-001 (10mg/kg) in C57Bl/6J mice, we observed a transient increase in the mobilization of unesterified cholesterol in HDL particles containing recombinant human apoA-I. Finally we show that cholesterol elimination was stimulated in CER-001 treated animals as demonstrated by the increased cholesterol concentration in liver and feces. In a familial hypercholesterolemia mouse model (LDL-receptor deficient mice), the infusion of CER-001 caused 17% and 32% reductions in plaque size, 17% and 23% reductions in lipid content after 5 and 10 doses given every 2 days, respectively. Also, there was an 80% reduction in macrophage content in the plaque following 5 doses, and decreased VCAM-1 expression by 16% and 22% in the plaque following 5 and 10 intravenous doses of CER-001, respectively. CONCLUSION: These data demonstrate that CER-001 rapidly enhances reverse lipid transport in the mouse, reducing vascular inflammation and promoting regression of diet-induced atherosclerosis in LDLr(-/-) mice upon a short-term multiple dose treatment.


Asunto(s)
Apolipoproteína A-I/química , Aterosclerosis/tratamiento farmacológico , Biomimética , Lipoproteínas HDL/sangre , Fosfolípidos/química , Proteínas Recombinantes/farmacología , Animales , Apolipoproteína A-I/farmacología , Células CHO , Adhesión Celular , Colesterol/sangre , Colesterol/química , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Heces , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Inflamación , Lípidos/sangre , Lipoproteínas/química , Hígado/metabolismo , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfolípidos/farmacología , Proteínas Recombinantes/química
9.
Biochim Biophys Acta ; 1793(7): 1250-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19345705

RESUMEN

Induction of apoptosis by TNF has recently been shown to implicate proteases from lysosomal origin, the cathepsins. Here, we investigated the role in apoptosis of palmitoyl protein thioesterase 1 (PPT1), another lysosomal enzyme that depalmitoylates proteins. We show that transformed fibroblasts derived from patients with the infantile form of neuronal ceroid lipofuscinosis (INCL), a neurodegenerative disease due to deficient activity of PPT1, are partially resistant to TNF-induced cell death (57-75% cell viability vs. 15-30% for control fibroblasts). TNF-initiated proteolytic cleavage of caspase-8, Bid and caspase-3, as well as cytochrome c release was strongly attenuated in INCL fibroblasts as compared to control cells. Noteworthy, activation of p42/p44 mitogen-activated protein kinase and of transcription factor NF-kappaB by TNF, and induction of cell death by staurosporine or chemotherapeutic drugs in INCL cells were unaffected by PPT1 deficiency. Resistance to TNF-induced apoptosis was also observed in embryonic fibroblasts derived from Ppt1/Cln1-deficient mice but not from mice with a targeted deletion of Cln3 or Cln5. Finally, reconstitution of PPT1 activity in mutant cells was accompanied by resensitization to TNF-induced caspase activation and toxicity. These observations emphasize for the first time the role of PPT1 and, likely, protein depalmitoylation in the regulation of TNF-induced apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Glicoproteínas de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/fisiología , Tioléster Hidrolasas/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Western Blotting , Transformación Celular Neoplásica , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Citometría de Flujo , Humanos , Proteínas de Membrana de los Lisosomas , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Lipofuscinosis Ceroideas Neuronales/enzimología , Lipofuscinosis Ceroideas Neuronales/patología , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Piel/citología , Piel/efectos de los fármacos , Piel/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
10.
Nature ; 448(7155): 811-5, 2007 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-17700700

RESUMEN

Unicellular organisms such as yeasts require a single cyclin-dependent kinase, Cdk1, to drive cell division. In contrast, mammalian cells are thought to require the sequential activation of at least four different cyclin-dependent kinases, Cdk2, Cdk3, Cdk4 and Cdk6, to drive cells through interphase, as well as Cdk1 to proceed through mitosis. This model has been challenged by recent genetic evidence that mice survive in the absence of individual interphase Cdks. Moreover, most mouse cell types proliferate in the absence of two or even three interphase Cdks. Similar results have been obtained on ablation of some of the activating subunits of Cdks, such as the D-type and E-type cyclins. Here we show that mouse embryos lacking all interphase Cdks (Cdk2, Cdk3, Cdk4 and Cdk6) undergo organogenesis and develop to midgestation. In these embryos, Cdk1 binds to all cyclins, resulting in the phosphorylation of the retinoblastoma protein pRb and the expression of genes that are regulated by E2F transcription factors. Mouse embryonic fibroblasts derived from these embryos proliferate in vitro, albeit with an extended cell cycle due to inefficient inactivation of Rb proteins. However, they become immortal on continuous passage. We also report that embryos fail to develop to the morula and blastocyst stages in the absence of Cdk1. These results indicate that Cdk1 is the only essential cell cycle Cdk. Moreover, they show that in the absence of interphase Cdks, Cdk1 can execute all the events that are required to drive cell division.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Ciclo Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/enzimología , Animales , Proteína Quinasa CDC2/deficiencia , Proteína Quinasa CDC2/genética , Células Cultivadas , Quinasas Ciclina-Dependientes/deficiencia , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Genes Esenciales/genética , Interfase , Ratones , Mitógenos/farmacología , Organogénesis
11.
Biochim Biophys Acta ; 1765(2): 101-25, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16412578

RESUMEN

Death of cancer cells influences tumor development and progression, as well as the response to anticancer therapies. This can occur through different cell death programmes which have recently been shown to implicate components of the acidic organelles, lysosomes. The role of lysosomes and lysosomal enzymes, including cathepsins and some lipid hydrolases, in programmed cell death associated with apoptotic or autophagic phenotypes is presented, as evidenced from observations on cultured cells and living animals. The possible molecular mechanisms that underlie the action of lysosomes during cell death are also described. Finally, the contribution of lysosomal proteins and lysosomes to tumor initiation and progression is discussed. Elucidation of this role and the underlying mechanisms will shed a new light on these 'old' organelles and hopefully pave the way for the development of novel anticancer strategies.


Asunto(s)
Apoptosis , Lisosomas/metabolismo , Neoplasias/patología , Proteínas/fisiología , Animales , Humanos , Transducción de Señal
12.
J Biol Chem ; 279(51): 52914-23, 2004 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-15452110

RESUMEN

Whereas caspases are essential components in apoptosis, other proteases seem to be involved in programmed cell death. This study investigated the role of lysosomal mannose 6-phosphorylated proteins in tumor necrosis factor (TNF)-induced apoptosis. We report that fibroblasts isolated from patients affected with inclusion-cell disease (ICD), having a deficient activity of almost all lysosomal hydrolases, are resistant to the toxic effect of TNF. These mutant cells exhibited a defect in TNF-induced caspase activation, Bid cleavage, and release of cytochrome c. In contrast, TNF-induced p42/p44 MAPK activation and CD54 expression remained unaltered. Human ICD lymphoblasts and fibroblasts derived from mice nullizygous for Igf2 and the two mannose 6-phosphate (M6P) receptors, Mpr300 and Mpr46, which develop an ICD-like phenotype, were also resistant to CD95 ligand and TNF, respectively. Moreover, correction of the lysosomal enzyme defect of ICD fibroblasts, using a medium enriched in M6P-containing proteins, enabled restoration of sensitivity to TNF. This effect was blocked by exogenous M6P but not by cathepsin B or L inhibitors. Altogether, these findings suggest that some M6P-bearing glycoproteins modulate the susceptibility to TNF-induced apoptosis. As a matter of fact, exogenous tripeptidyl peptidase 1, a lysosomal carboxypeptidase, could sensitize ICD fibroblasts to TNF. These observations highlight the hitherto unrecognized role of some mannose 6-phosphorylated proteins such as tripeptidyl peptidase 1 in the apoptotic cascade triggered by TNF.


Asunto(s)
Apoptosis , Fibroblastos/metabolismo , Manosafosfatos/química , Mucolipidosis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Aminopeptidasas , Animales , Carboxipeptidasas/química , Catepsina B/metabolismo , Catepsina L , Catepsinas/metabolismo , Muerte Celular , Línea Celular Transformada , Supervivencia Celular , Colorantes/farmacología , Medios de Cultivo/farmacología , Cisteína Endopeptidasas , Citocromos c/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Relación Dosis-Respuesta a Droga , Endopeptidasas/metabolismo , Proteína Ligando Fas , Citometría de Flujo , Aparato de Golgi/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/biosíntesis , Linfocitos/metabolismo , Lisosomas/metabolismo , Lisosomas/ultraestructura , Glicoproteínas de Membrana/metabolismo , Ratones , Microscopía Fluorescente , Fenotipo , Fosforilación , Proteínas Recombinantes/química , Transducción de Señal , Piel/citología , Sales de Tetrazolio/farmacología , Tiazoles/farmacología , Factores de Tiempo , Receptor fas/biosíntesis
13.
Neurochem Res ; 29(5): 871-80, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15139286

RESUMEN

Lysosomal storage disorders are inborn diseases resulting from the lack or activity of lysosomal hydrolases, transporters, or integral membrane proteins. Although most of the genes encoding these proteins have been characterized and many gene defects identified, the molecular bases underlying the pathophysiology of these genetic diseases still remain obscure. In this mini-review, the potential role of apoptotic cell death in the development of the cellular and tissue lesions seen in lysosomal storage disorders, and particularly in neurological diseases, is discussed. A list of observations documenting either a decrease or an exacerbation in apoptosis induction are presented. The putative, yet controversial contribution of certain sphingolipids and cathepsins in the regulation of these phenomena is emphasized.


Asunto(s)
Apoptosis , Enfermedades por Almacenamiento Lisosomal/patología , Apoptosis/fisiología , Endopeptidasas/metabolismo , Humanos , Lisosomas/enzimología , Esfingolípidos/fisiología
14.
J Soc Biol ; 197(3): 217-21, 2003.
Artículo en Francés | MEDLINE | ID: mdl-14708343

RESUMEN

Various sphingolipids are being viewed as bioactive molecules and/or second messengers. Among them, ceramide (or N-acylsphingosine) and sphingosine generally behave as pro-apoptotic mediators. Indeed, ceramide mediates the death signal initiated by numerous stress agents which either stimulate its de novo synthesis or activate sphingomyelinases that release ceramide from sphingomyelin. For instance, the early generation of ceramide promoted by TNF is mediated by a neutral sphingomyelinase the activity of which is regulated by the FAN adaptor protein, thereby controlling caspase activation and the cell death programme. In addition, the activity of this neutral sphingomyelinase is negatively modulated by caveolin, a major constituent of some membrane microdomains. The enzyme sphingosine kinase also plays a crucial role in apoptosis signalling by regulating the intracellular levels of two sphingolipids having opposite effects, namely the pro-apoptotic sphingosine and the anti-apoptotic sphingosine 1-phosphate molecule. Ceramide and sphingosine metabolism therefore appears as a pivotal regulatory pathway in the determination of cell fate.


Asunto(s)
Apoptosis/fisiología , Transducción de Señal/fisiología , Esfingolípidos/fisiología , Animales , Ceramidas/metabolismo , Humanos , Modelos Biológicos , Sistemas de Mensajero Secundario/fisiología , Esfingosina/metabolismo
15.
Neurochem Res ; 27(7-8): 601-7, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12374195

RESUMEN

The sphingolipid ceramide has recently emerged as a new transducer or modulator of apoptotic cell death. This function, however, has recently been challenged. Here, in the light of recent observations, the role of ceramide in apoptosis signaling is discussed.


Asunto(s)
Apoptosis/fisiología , Ceramidas/fisiología , Animales , Humanos
16.
Expert Rev Mol Med ; 4(28): 1-15, 2002 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-14987386

RESUMEN

Various lipidic molecules serve as second messengers for transducing signals from the cell surface to the cell interior and trigger specific cellular responses. Sphingolipids represent a complex group of lipids that have recently emerged as new transducers in eukaryotic cells. Several sphingolipid molecules are able to modulate cell growth, differentiation and death. This review summarises current knowledge of the signalling functions of sphingolipids, especially in the regulation of tumour necrosis factor [alpha] (TNF-[alpha])-mediated cytotoxic effects. TNF-[alpha] is a multifaceted cytokine that controls a wide range of immune responses in mammals, including induction of programmed cell death (also called apoptosis). On the basis of recent observations, a working model is proposed for the molecular mechanisms underlying regulation of sphingolipid generation following TNF-[alpha] receptor 1 activation. The implications of these findings for the development of future pharmacological strategies to prevent the cytotoxic TNF-[alpha] response and subsequent cellular dysfunctions (as seen in various human diseases) are discussed.


Asunto(s)
Apoptosis/efectos de los fármacos , Transducción de Señal/genética , Esfingolípidos/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Apoptosis/genética , Muerte Celular/efectos de los fármacos , Estructuras Celulares/fisiología , Humanos , Modelos Biológicos , Sistemas de Mensajero Secundario/fisiología , Transducción de Señal/efectos de los fármacos , Esfingolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...