Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15020, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951562

RESUMEN

Energy consumption of constructed educational facilities significantly impacts economic, social and environment sustainable development. It contributes to approximately 37% of the carbon dioxide emissions associated with energy use and procedures. This paper aims to introduce a study that investigates several artificial intelligence-based models to predict the energy consumption of the most important educational buildings; schools. These models include decision trees, K-nearest neighbors, gradient boosting, and long-term memory networks. The research also investigates the relationship between the input parameters and the yearly energy usage of educational buildings. It has been discovered that the school sizes and AC capacities are the most impact variable associated with higher energy consumption. While 'Type of School' is less direct or weaker correlation with 'Annual Consumption'. The four developed models were evaluated and compared in training and testing stages. The Decision Tree model demonstrates strong performance on the training data with an average prediction error of about 3.58%. The K-Nearest Neighbors model has significantly higher errors, with RMSE on training data as high as 38,429.4, which may be indicative of overfitting. In contrast, Gradient Boosting can almost perfectly predict the variations within the training dataset. The performance metrics suggest that some models manage this variability better than others, with Gradient Boosting and LSTM standing out in terms of their ability to handle diverse data ranges, from the minimum consumption of approximately 99,274.95 to the maximum of 683,191.8. This research underscores the importance of sustainable educational buildings not only as physical learning spaces but also as dynamic environments that contribute to informal educational processes. Sustainable buildings serve as real-world examples of environmental stewardship, teaching students about energy efficiency and sustainability through their design and operation. By incorporating advanced AI-driven tools to optimize energy consumption, educational facilities can become interactive learning hubs that encourage students to engage with concepts of sustainability in their everyday surroundings.


Asunto(s)
Inteligencia Artificial , Instituciones Académicas , Humanos , Conservación de los Recursos Energéticos/métodos , Árboles de Decisión , Modelos Teóricos
2.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731990

RESUMEN

This work aimed to describe the adsorption behavior of Congo red (CR) onto activated biochar material prepared from Haematoxylum campechianum waste (ABHC). The carbon precursor was soaked with phosphoric acid, followed by pyrolysis to convert the precursor into activated biochar. The surface morphology of the adsorbent (before and after dye adsorption) was characterized by scanning electron microscopy (SEM/EDS), BET method, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) and, lastly, pHpzc was also determined. Batch studies were carried out in the following intervals of pH = 4-10, temperature = 300.15-330.15 K, the dose of adsorbent = 1-10 g/L, and isotherms evaluated the adsorption process to determine the maximum adsorption capacity (Qmax, mg/g). Kinetic studies were performed starting from two different initial concentrations (25 and 50 mg/L) and at a maximum contact time of 48 h. The reusability potential of activated biochar was evaluated by adsorption-desorption cycles. The maximum adsorption capacity obtained with the Langmuir adsorption isotherm model was 114.8 mg/g at 300.15 K, pH = 5.4, and a dose of activated biochar of 1.0 g/L. This study also highlights the application of advanced machine learning techniques to optimize a chemical removal process. Leveraging a comprehensive dataset, a Gradient Boosting regression model was developed and fine-tuned using Bayesian optimization within a Python programming environment. The optimization algorithm efficiently navigated the input space to maximize the removal percentage, resulting in a predicted efficiency of approximately 90.47% under optimal conditions. These findings offer promising insights for enhancing efficiency in similar removal processes, showcasing the potential of machine learning in process optimization and environmental remediation.


Asunto(s)
Teorema de Bayes , Carbón Orgánico , Rojo Congo , Aprendizaje Automático , Carbón Orgánico/química , Adsorción , Rojo Congo/química , Cinética , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier
3.
Molecules ; 28(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687217

RESUMEN

This study explored the effects of solution pH, biosorbent dose, contact time, and temperature on the Pb(II) biosorption process of natural and chemically treated leaves of A. compressa K. (Raw-AC and AC-OH, respectively). The results show that the surface characteristics of Raw-AC changed following alkali treatment. FT-IR analysis showed the presence of various functional groups on the surface of the biosorbent, which were binding sites for the Pb(II) biosorption. The nonlinear pseudo-second-order kinetic model was found to be the best fitted to the experimental kinetic data. Adsorption equilibrium data at pH = 2-6, biosorbents dose from 5 to 20 mg/L, and temperature from 300.15 to 333.15 K were adjusted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models. The results show that the adsorption capacity was enhanced with the increase in the solution pH and diminished with the increase in the temperature and biosorbent dose. It was also found that AC-OH is more effective than Raw-AC in removing Pb(II) from aqueous solutions. This was also confirmed using artificial neural networks and genetic algorithms, where it was demonstrated that the improvement was around 57.7%. The nonlinear Langmuir isotherm model was the best fitted, and the maximum adsorption capacities of Raw-AC and AC-OH were 96 mg/g and 170 mg/g, respectively. The removal efficiency of Pb(II) was maintained approximately after three adsorption and desorption cycles using 0.5 M HCl as an eluent. This research delved into the impact of solution pH, biosorbent characteristics, and operational parameters on Pb(II) biosorption, offering valuable insights for engineering education by illustrating the practical application of fundamental chemical and kinetic principles to enhance the design and optimization of sustainable water treatment systems.


Asunto(s)
Ardisia , Plomo , Espectroscopía Infrarroja por Transformada de Fourier , Redes Neurales de la Computación , Hojas de la Planta , Convulsiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA