Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114140, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38656873

RESUMEN

Women are more vulnerable to stress and have a higher likelihood of developing mood disorders. The serotonin (5HT) system has been highly implicated in stress response and mood regulation. However, sex-dependent mechanisms underlying serotonergic regulation of stress vulnerability remain poorly understood. Here, we report that adult hippocampal neural stem cells (NSCs) of the Ascl1 lineage (Ascl1-NSCs) in female mice express functional 5HT1A receptors (5HT1ARs), and selective deletion of 5HT1ARs in Ascl1-NSCs decreases the Ascl1-NSC pool only in females. Mechanistically, 5HT1AR deletion in Ascl1-NSCs of females leads to 5HT-induced depolarization mediated by upregulation of 5HT7Rs. Furthermore, repeated restraint stress (RRS) impairs Ascl1-NSC maintenance through a 5HT1AR-mediated mechanism. By contrast, Ascl1-NSCs in males express 5HT7R receptors (5HT7Rs) that are downregulated by RRS, thus maintaining the Ascl1-NSC pool. These findings suggest that sex-specific expression of distinct 5HTRs and their differential interactions with stress may underlie sex differences in stress vulnerability.


Asunto(s)
Hipocampo , Células-Madre Neurales , Receptores de Serotonina , Estrés Psicológico , Animales , Células-Madre Neurales/metabolismo , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Receptores de Serotonina/metabolismo , Receptores de Serotonina/genética , Estrés Psicológico/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT1A/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Caracteres Sexuales , Ratones Endogámicos C57BL , Serotonina/metabolismo
2.
Cell Stem Cell ; 30(4): 415-432.e6, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028406

RESUMEN

Patients with Alzheimer's disease (AD) exhibit progressive memory loss, depression, and anxiety, accompanied by impaired adult hippocampal neurogenesis (AHN). Whether AHN can be enhanced in impaired AD brain to restore cognitive and affective function remains elusive. Here, we report that patterned optogenetic stimulation of the hypothalamic supramammillary nucleus (SuM) enhances AHN in two distinct AD mouse models, 5×FAD and 3×Tg-AD. Strikingly, the chemogenetic activation of SuM-enhanced adult-born neurons (ABNs) rescues memory and emotion deficits in these AD mice. By contrast, SuM stimulation alone or activation of ABNs without SuM modification fails to restore behavioral deficits. Furthermore, quantitative phosphoproteomics analyses reveal activation of the canonical pathways related to synaptic plasticity and microglia phagocytosis of plaques following acute chemogenetic activation of SuM-enhanced (vs. control) ABNs. Our study establishes the activity-dependent contribution of SuM-enhanced ABNs in modulating AD-related deficits and informs signaling mechanisms mediated by the activation of SuM-enhanced ABNs.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Neuronas/metabolismo , Hipocampo , Encéfalo , Cognición , Modelos Animales de Enfermedad , Ratones Transgénicos , Neurogénesis/fisiología
3.
J Transl Med ; 21(1): 258, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061718

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is characterized by a progressive loss of memory that cannot be efficiently managed by currently available AD therapeutics. So far, most treatments for AD that have the potential to improve memory target neural circuits to protect their integrity. However, the vulnerable neural circuits and their dynamic remodeling during AD progression remain largely undefined. METHODS: Circuit-based approaches, including anterograde and retrograde tracing, slice electrophysiology, and fiber photometry, were used to investigate the dynamic structural and functional remodeling of a GABAergic circuit projected from the medial septum (MS) to the dentate gyrus (DG) in 3xTg-AD mice during AD progression. RESULTS: We identified a long-distance GABAergic circuit that couples highly connected MS and DG GABAergic neurons during spatial memory encoding. Furthermore, we found hyperactivity of DG interneurons during early AD, which persisted into late AD stages. Interestingly, MS GABAergic projections developed a series of adaptive strategies to combat DG interneuron hyperactivity. During early-stage AD, MS-DG GABAergic projections exhibit increased inhibitory synaptic strength onto DG interneurons to inhibit their activities. During late-stage AD, MS-DG GABAergic projections form higher anatomical connectivity with DG interneurons and exhibit aberrant outgrowth to increase the inhibition onto DG interneurons. CONCLUSION: We report the structural and functional remodeling of the MS-DG GABAergic circuit during disease progression in 3xTg-AD mice. Dynamic MS-DG GABAergic circuit remodeling represents a compensatory mechanism to combat DG interneuron hyperactivity induced by reduced GABA transmission.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Ratones Transgénicos , Hipocampo
4.
iScience ; 23(7): 101255, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32585593

RESUMEN

The microtubule-associated tau protein forms pathological inclusions that accumulate in an age-dependent manner in tauopathies including Alzheimer's disease (AD). Since age is the major risk factor for AD, we examined endogenous tau species that evolve during aging in physiological and diseased conditions. In aged mouse brain, we found tau-immunoreactive clusters embedded within structures that are reminiscent of periodic acid-Schiff (PAS) granules. We showed that PAS granules harbor distinct tau species that are more prominent in 3xTg-AD mice. Epitope profiling revealed hypo-phosphorylated rather than hyper-phosphorylated tau commonly observed in tauopathies. High-resolution imaging and 3D reconstruction suggest a link between tau clusters, reactive astrocytes, and microglia, indicating that early tau accumulation may promote neuroinflammation during aging. Using postmortem human brain, we identified tau as a component of corpora amylacea (CA), age-related structures that are functionally analogous to PAS granules. Overall, our study supports neuroimmune dysfunction as a precipitating event in tau pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...