Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Res ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016153

RESUMEN

Disorders of ATP synthase, the key enzyme in mitochondrial energy supply, belong to the most severe metabolic diseases, manifesting as early-onset mitochondrial encephalo-cardiomyopathies. Since ATP synthase subunits are encoded by both mitochondrial and nuclear DNA, pathogenic variants can be found in either genome. In addition, the biogenesis of ATP synthase requires several assembly factors, some of which are also hotspots for pathogenic variants. While variants of MT-ATP6 and TMEM70 represent the most common cases of mitochondrial and nuclear DNA mutations respectively, the advent of next-generation sequencing has revealed new pathogenic variants in a number of structural genes and TMEM70, sometimes with truly peculiar genetics. Here we present a systematic review of the reported cases and discuss biochemical mechanisms, through which they are affecting ATP synthase. We explore how the knowledge of pathophysiology can improve our understanding of enzyme biogenesis and function.

2.
Physiol Res ; 70(Suppl4): S471-S484, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-35199537

RESUMEN

Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus. Recently, natural mitochondrial genome (mtDNA) polymorphisms (haplogroups) received increasing attention in the pathophysiology of human common diseases. However, retrograde effects of mtDNA variants on such traits are difficult to study in humans. The conplastic strains represent key animal models to elucidate regulatory roles of mtDNA haplogroups on defined nuclear genome background. To analyze the relationship between mtDNA variants and cardiometabolic traits, we derived a set of rat conplastic strains (SHR-mtBN, SHR-mtF344 and SHR-mtLEW), harboring all major mtDNA haplotypes present in common inbred strains on the nuclear background of the spontaneously hypertensive rat (SHR). The BN, F344 and LEW mtDNA differ from the SHR in multiple amino acid substitutions in protein coding genes and also in variants of tRNA and rRNA genes. Different mtDNA haplotypes were found to predispose to various sets of cardiometabolic phenotypes which provided evidence for significant retrograde effects of mtDNA in the SHR. In the future, these animals could be used to decipher individual biochemical components involved in the retrograde signaling.


Asunto(s)
Enfermedades Cardiovasculares , ADN Mitocondrial , Animales , Enfermedades Cardiovasculares/metabolismo , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Fenotipo , Ratas , Ratas Endogámicas F344 , Ratas Endogámicas SHR
3.
Physiol Res ; 66(6): 917-924, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-29261326

RESUMEN

Brown adipose tissue (BAT) plays an important role in lipid and glucose metabolism in rodents and possibly also in humans. Identification of genes responsible for BAT function would shed light on underlying pathophysiological mechanisms of metabolic disturbances. Recent linkage analysis in the BXH/HXB recombinant inbred (RI) strains, derived from Brown Norway (BN) and spontaneously hypertensive rats (SHR), identified two closely linked quantitative trait loci (QTL) associated with glucose oxidation and glucose incorporation into BAT lipids in the vicinity of Wars2 (tryptophanyl tRNA synthetase 2 (mitochondrial)) gene on chromosome 2. The SHR harbors L53F WARS2 protein variant that was associated with reduced angiogenesis and Wars2 thus represents a prominent positional candidate gene. In the current study, we validated this candidate as a quantitative trait gene (QTG) using transgenic rescue experiment. SHR-Wars2 transgenic rats with wild type Wars2 gene when compared to SHR, showed more efficient mitochondrial proteosynthesis and increased mitochondrial respiration, which was associated with increased glucose oxidation and incorporation into BAT lipids, and with reduced weight of visceral fat. Correlation analyses in RI strains showed that increased activity of BAT was associated with amelioration of insulin resistance in muscle and white adipose tissue. In summary, these results demonstrate important role of Wars2 gene in regulating BAT function and consequently lipid and glucose metabolism.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Grasa Intraabdominal/metabolismo , Mutación , Obesidad/genética , Triptófano-ARNt Ligasa/genética , Tejido Adiposo Pardo/patología , Animales , Células Cultivadas , Metabolismo Energético/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Glucosa/metabolismo , Grasa Intraabdominal/fisiopatología , Metabolismo de los Lípidos , Masculino , Mitocondrias/metabolismo , Obesidad/metabolismo , Obesidad/fisiopatología , Fenotipo , Sitios de Carácter Cuantitativo , Ratas Endogámicas SHR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...