Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37031853

RESUMEN

In squamate reptiles, extensive innervation of the heart and vascular beds allows for continuous modulation of the cardiovascular system by the autonomic nervous system. The systemic vasculature is the main target of excitatory sympathetic adrenergic fibers, while the pulmonary circulation has been described as less responsive to both nervous and humoral modulators. However, histochemical evidence has demonstrated the presence of adrenergic fibers in pulmonary circulation. Besides, reduced responsiveness is intriguing since the balance of regulation between systemic and pulmonary vascular circuits has critical hemodynamic implications in animals with an undivided ventricle and consequent cardiovascular shunts. The present study investigated the role and functional relevance of α and ß-adrenergic stimulation in regulating systemic and mainly the pulmonary circulations in a decerebrate, autonomically responsive rattlesnake preparation. The use of the decerebrate preparation allowed us to observe a new diverse functional modulation of vascular beds and the heart. In resting snakes, the pulmonary vasculature is less reactive to adrenergic agonists at 25 °C. However, the ß-adrenergic tone is relevant for modulating resting peripheral pulmonary conductance, while both α- and ß-adrenergic tones are relevant for the systemic circuit. Active dynamic modulation of both pulmonary compliance and conductance effectively counterbalances alterations in the systemic circulation to maintain the R-L shunt pattern. Furthermore, we suggest that despite the great attention given to cardiac adjustments, vascular modulation is sufficient to support the hemodynamic adjustments needed to control blood pressure.


Asunto(s)
Adrenérgicos , Crotalus , Animales , Adrenérgicos/farmacología , Ventrículos Cardíacos , América del Sur
2.
Artículo en Inglés | MEDLINE | ID: mdl-35944610

RESUMEN

A decerebrate rattlesnake, Crotalus durissus, has previously been used as a model Squamate for cardiovascular studies. It enabled instrumentation for concomitant recordings of diverse variables that showed autonomic responses. However, to validate the preparation and its scope for use, it is necessary to assess how close its cardiovascular variables are to non-decerebrate snakes and the effectiveness of its autonomic responses. Similarly, it is important to analyze its recovery profile after instrumentation and observe if it maintains stability throughout the duration of experimental protocol. Here we have objectively assessed these points by comparing decerebrate preparations and non-decerebrate snakes, after the occlusive cannulation of the vertebral artery. We have assessed cardiovascular variables and the baroreflex to analyze the presence, magnitude and stability of complex autonomic-controlled parameters as indicators of autonomic nervous system (ANS) functionality. After instrumentation, mean heart rates were high but recovered to stable values within 24 h. Mean arterial pressure stabilized within 24 h in control snakes and 48 h in decerebrate preparations. After that, both parameters remained stable. The operational gain and effectiveness index of the baroreflex recovered within the first 6 h after instrumentation in both experimental groups. In addition, the baroreflex capacities and its limits were also equivalent between the groups. These experiments demonstrated that decerebrate preparations and inactive, non-decerebrate snakes showed comparable recovery profiles following anesthesia and cannulation, maintained similar values of cardiovascular variables during experimental manipulation and exhibited functional, ANS modulated reflexes. Accordingly, the present results attest the relevance of this decerebrate preparation for studies on cardiovascular modulation.


Asunto(s)
Barorreflejo , Crotalus , Animales , Presión Sanguínea , Crotalus/fisiología , Corazón/fisiología , Frecuencia Cardíaca , Vigilia
3.
Physiol Biochem Zool ; 95(2): 168-182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35139007

RESUMEN

AbstractUnderstanding the basis of vascular tonus regulation is fundamental to comprehending cardiovascular physiology. In the present study, we used the recently developed decerebrate rattlesnake preparation to investigate the role of nitric oxide (NO) in the control of vascular tonus in a squamate reptile. This preparation allowed multiple concomitant cardiovascular parameters to be monitored, while avoiding the deleterious effect of anesthetic drugs on autonomic modulation. We observed that both systemic and pulmonary circuits were clearly responsive to NO signaling. NO increased vascular conductance in the systemic and pulmonary systems. Vasodilation by NO of the systemic circulation was compensated by cardiovascular alterations involving venous return, cardiac output, and cardiac shunt adjustments. The cardiac shunt seemed to be actively used for hemodynamic adjustments via modulation of the pulmonary artery constriction. N(ω)-nitro-L-arginine methyl ester injection demonstrated that NO contributes to modulating resting vasodilation in the systemic circuit. In contrast, NO-mediated vasodilation did not have an important role in the pulmonary circulation in inactive decerebrated snakes at 25°C. These responses vary importantly from those described for anesthetized snakes.


Asunto(s)
Sistema Cardiovascular , Crotalus , Animales , Óxido Nítrico , América del Sur , Vasodilatación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA