Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Phytoremediation ; 25(10): 1259-1268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36382673

RESUMEN

Tequila vinasse has a high contaminating capacity due to its physicochemical characteristics. Efficient and low-cost alternative treatments are required to reduce and control the environmental impacts caused by raw vinasse discharges, mainly from micro and small factories. One option is wetland technologies in which vegetation plays an important role in the proper functioning of the system; thus, the species to be used must be properly selected based on their resistance and tolerance to the toxic effects of vinasse. Therefore, this study aims to evaluate the resistance of four macrophyte species to tequila vinasse in wetland microcosms that is, Canna indica, Cyperus papyrus, Iris sibirica, and Typha latifolia which were exposed to 5, 7, 10, 12, and 15% of vinasse diluted with domestic wastewater. The control parameters (relative content, evapotranspiration, pH, electrical conductivity, and apparent color) showed that the plants in general developed stress symptoms. However, statistical analysis revealed a significant difference (p < 0.05) between plant species and vinasse treatments, further evidencing that I. sibirica is the species with the greatest potential to be used as emergent vegetation in treatment wetlands for the purification of tequila vinasse.


The novelty of this study lies in the fact that different species of macrophytes have been evaluated to find those with the capacity to resist the physicochemical characteristics of tequila vinasses; corroborating that there are more appropriate species than others. I. sibirica stood out mainly based on its better physiological response to the Relative Chlorophyll Content, which is the most important parameter for the evaluation of plant health. In this way, the results of this study will allow the evaluation of different types of constructed wetlands for the treatment of tequila vinasse. The knowledge generated is useful for treating other distillery stillages around the world with wetland technology.


Asunto(s)
Cyperus , Género Iris , Typhaceae , Zingiberales , Humedales , Biodegradación Ambiental , Eliminación de Residuos Líquidos
2.
Sci Total Environ ; 645: 524-532, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30029128

RESUMEN

The aim was to evaluate and compare total nitrogen (TN) removal in pilot-scale partially saturated vertical wetlands (PSVWs) with and without an internal solid source of organic carbon (corncob) in order to distinguish the role of nitrification-denitrification and ANAMMOX in the removal process. The height of the free-drainage zone (FDZ) was 40 cm and the saturated zone (SZ) was 30 cm in system I (SI) and system II (SII) and 40 cm in system III (SIII) and system IV (SIV). In SII and SIV, approximately 30 kg of dry, 5 cm-length corncob was added. The systems were evaluated during two periods, that is, P1 and P2. Measurements of water quality parameters including BOD5, COD, organic nitrogen (Org-N), ammonium, nitrate and nitrite were taken in the influent and effluents on a weekly basis; nitrate measurements were also taken at the interface. Measurements of pH, dissolved oxygen (DO) and oxidation-reduction potential (ORP) were taken in the SZ. The height of both SZ (40 cm vs. 30 cm in P1) and FDZ (40 vs. 25 and 30 cm in SI/SIII in P2) did not affect the efficiencies (p > 0.05) but the presence or absence of corn cob did (p < 0.05). Thus, SII and SIV were superior when compared to SI and SIII (p < 0.05) with TN average removal efficiencies of 72.9% and 73.2% in P1, and 59.8% and 64.2% in P2, respectively; showing a tendency to lower values when the biodegradable organics supplied by the corncob diminished. In SI and SIII, TN removals were 47.6% and 40.3% in P1, and 46.1% and 44.1% in P2, respectively. In SII and SIV, denitrification took place in both the lower semi-saturated part of the FDZ (probably also ANAMMOX) and SZ; whereas in SI and SIII, ANAMMOX took place in the lower semi-saturated part of the FDZ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA