Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Carcinog ; 51 Suppl 1: E168-75, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22467534

RESUMEN

Interleukin-1ß is a key pro-inflammatory cytokine that has been associated with chronic inflammation and inflammation-related cancer initiation and progression. There are inter-individual differences in IL1B expression which may be due to single nucleotide polymorphisms (SNPs) in the regulatory regions of the gene. We have previously shown that a SNP located in the promoter of the IL1B gene (the IL1B T-31C SNP) was associated with lung cancer risk. Interestingly, the presence of the C allele was also associated with reduced IL1B expression in normal lung tissue of lung cancer patients. In the present study, we found that differential binding patterns of nuclear proteins to oligonucleotide probes containing the IL1B -31C allele compared to those with the T allele were due to specific binding of the transcription factor Yin Yang 1 (YY1). We further found evidence that specific recruitment of YY1 to the -31C region of the IL1B promoter regulated IL1B gene expression using siRNA directed towards YY1. The results indicate that the presence of a C allele at the -31 position may lead to decreased expression of the IL1B gene due to a specific binding of YY1 in lung epithelial cells. Our study provides functional significance of allelic variation at a single locus in the IL1B promoter and contributes to understanding the regulation of IL1B in inflammation-related carcinogenesis.


Asunto(s)
Interleucina-1beta/genética , Polimorfismo de Nucleótido Simple , Factor de Transcripción YY1/metabolismo , Alelos , Sitios de Unión , Línea Celular , Inmunoprecipitación de Cromatina , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Inflamación/complicaciones , Inflamación/genética , Interleucina-1beta/metabolismo , Neoplasias/etiología , Regiones Promotoras Genéticas , ARN Interferente Pequeño , Factor de Transcripción YY1/genética
2.
Toxicol Lett ; 206(3): 289-99, 2011 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-21872649

RESUMEN

1-Nitropyrene (1-NP) is a nitro-polycyclic aromatic hydrocarbon (nitro-PAH) present in diesel exhaust and bound to particular matter in urban air. We show that 1-NP and the referent PAH benzo(a)pyrene (BP) induce apoptosis and a lipid accumulation dependent on cytochrome P450 1A1-metabolites in mouse hepatoma cells, whereas 1-amino-pyrene had no effect. The caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethyl ketone (Z-VAD-fmk), inhibits 1-NP-induced apoptosis, but failed to alter 1-NP-triggered lipid accumulation determined by Nile red staining. We further show that cholesterol and fatty acid contents are modified after nitro-PAH exposure and that 1-NP-induced cholesterol level is partially involved in related apoptosis. In parallel, the activity of the stearoyl-CoA desaturase 1 (SCD1), determined by fatty acid analysis, and its expression are reduced by 1-NP. The role of SCD1 in 1-NP-induced apoptosis is demonstrated in cells down-expressing SCD1, in which an increased apoptosis is observed, whereas the SCD1 overexpression elicits the opposite effects. In contrast, changes in SCD1 gene expression have no effect on the induced lipid accumulation. Moreover, 1-NP increases the activity of the AMP-dependent protein kinase (AMPK) leading to a caspase-independent apoptosis. Overall, our study demonstrates that the 1-NP-induced apoptosis is caspase- and AMPK-dependent, and is associated to a decrease of SCD1 expression which results in an alteration of lipid homeostasis.


Asunto(s)
Apoptosis/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Pirenos/toxicidad , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Benzo(a)pireno/toxicidad , Caspasas/fisiología , Línea Celular Tumoral , Colesterol/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Ratones , Estearoil-CoA Desaturasa/fisiología
3.
Mutat Res ; 684(1-2): 11-23, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19941874

RESUMEN

3-Nitrobenzanthrone (3-NBA) is a mutagenic and carcinogenic environmental pollutant found in diesel exhaust and urban air pollution. In the present work we have characterised the effects of 3-NBA and its metabolite 3-aminobenzanthrone (3-ABA) on cell death and cytokine release in mouse hepatoma Hepa1c1c7 cells. These effects were related to induced DNA damage and changes in cell signalling pathways. 3-NBA resulted in cell death and caused most DNA damage as judged by the amount of DNA adducts ((32)P-postlabelling assay), single strand (ss)DNA breaks and oxidative DNA lesions (comet assay) detected. An increased phosphorylation of H2AX, chk1, chk2 and partly ATM was observed using flow cytometry and/or Western blotting. Both compounds increased phosphorylation of p53 and MAPKs (ERK, p38 and JNK). However, only 3-NBA caused an accumulation of p53 in the nucleus and a translocation of Bax to the mitochondria. The p53 inhibitor pifithrin-alpha inhibited 3-NBA-induced apoptosis, indicating that cell death was a result of the triggering of DNA signalling pathways. The highest phosphorylation of Akt and degradation of IkappaB-alpha (suggesting activation of NF-kappaB) were also seen after treatment with 3-NBA. In contrast 3-ABA increased IL-6 release, but caused little or no toxicity. Cytokine release was inhibited by PD98059 and curcumin, suggesting that ERK and NF-kappaB play a role in this process. In conclusion, 3-NBA seems to have a higher potency to induce DNA damage compatible with its cytotoxic effects, while 3-ABA seems to have a greater effect on the immune system.


Asunto(s)
Benzo(a)Antracenos/toxicidad , Daño del ADN/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Neoplasias Hepáticas Experimentales/genética , Mutágenos/toxicidad , Transducción de Señal/efectos de los fármacos , Animales , Benzo(a)Antracenos/administración & dosificación , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Quimiocina CXCL2/metabolismo , Interleucina-6/metabolismo , Ratones , Receptores de Hidrocarburo de Aril/metabolismo
4.
Toxicol Appl Pharmacol ; 242(2): 231-40, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19874837

RESUMEN

Gap junctions are channels in plasma membrane composed of proteins called connexins. These channels are organized in special domains between cells, and provide for direct gap junctional intercellular communication (GJIC), allowing diffusion of signalling molecules <1 kD. GJIC regulates cell homeostasis and notably the balance between proliferation, cell cycle arrest, cell survival and apoptosis. Here, we have investigated benzo[a]pyrene (B[a]P) effects on GJIC and on the subcellular localization of the major protein of gap junction: connexin-43 (Cx43). Our results showed that B[a]P increased GJIC between mouse hepatoma Hepa1c1c7 cells via translocation of Cx43 from Golgi apparatus and lipid rafts into gap junction plaques. Interestingly, inhibition of GJIC by chlordane or small interference RNA directed against Cx43 enhanced B[a]P-induced apoptosis in Hepa1c1c7 cells. The increased apoptosis caused by inhibition of GJIC appeared to be mediated by ERK/MAPK pathway. It is suggested that B[a]P could induce transfer of cell survival signal or dilute cell death signal via regulation of ERK/MAPK through GJIC.


Asunto(s)
Apoptosis/efectos de los fármacos , Benzo(a)pireno/farmacología , Comunicación Celular/efectos de los fármacos , Conexina 43/metabolismo , Uniones Comunicantes/efectos de los fármacos , Animales , Western Blotting , Técnica del Anticuerpo Fluorescente , Uniones Comunicantes/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...