Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Transplant ; 27(6): 867-878, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29852748

RESUMEN

Autologous olfactory ensheathing cell (OEC) transplantation is a promising therapy for spinal cord injury; however, the efficacy varies between trials in both animals and humans. The main reason for this variability is that the purity and phenotype of the transplanted cells differs between studies. OECs are susceptible to modulation with neurotrophic factors, and thus, neurotrophins can be used to manipulate the transplanted cells into an optimal, consistent phenotype. OEC transplantation can be divided into 3 phases: (1) cell preparation, (2) cell administration, and (3) continuous support to the transplanted cells in situ. The ideal behaviour of OECs differs between these 3 phases; in the cell preparation phase, rapid cell expansion is desirable to decrease the time between damage and transplantation. In the cell administration phase, OEC survival and integration at the injury site, in particular migration into the glial scar, are the most critical factors, along with OEC-mediated phagocytosis of cellular debris. Finally, continuous support needs to be provided to the transplantation site to promote survival of both transplanted cells and endogenous cells within injury site and to promote long-term integration of the transplanted cells and angiogenesis. In this review, we define the 3 phases of OEC transplantation into the injured spinal cord and the optimal cell behaviors required for each phase. Optimising functional outcomes of OEC transplantation can be achieved by modulation of cell behaviours with neurotrophins. We identify the key growth factors that exhibit the strongest potential for optimizing the OEC phenotype required for each phase.


Asunto(s)
Factores de Crecimiento Nervioso/uso terapéutico , Neuroglía/trasplante , Bulbo Olfatorio/citología , Traumatismos de la Médula Espinal/terapia , Animales , Proliferación Celular , Humanos , Neuroglía/citología , Traumatismos de la Médula Espinal/fisiopatología , Regeneración de la Medula Espinal , Trasplante Autólogo
2.
Neuroscience ; 324: 140-50, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26955781

RESUMEN

Transplantation of peripheral glia is being trialled for neural repair therapies, and identification of compounds that enhance the activity of glia is therefore of therapeutic interest. We have previously shown that curcumin potently stimulates the activity of olfactory glia. We have now examined the effect of curcumin on Schwann cell (SC) activities including proliferation, migration and the expression of protein markers. SCs were treated with control media and with different concentrations of curcumin (0.02-20 µM). Cell proliferation was determined by MTS assay and migration changes were determined by single live cell migration tracking. We found that small doses of curcumin (40 nM) dramatically increased the proliferation and migration in SCs within just one day. When compared with olfactory glia, curcumin stimulated SC proliferation more rapidly and at lower concentrations. Curcumin significantly increased the migration of SCs, and also increased the dynamic activity of lamellipodial waves which are essential for SC migration. Expression of the activated form of the MAP kinase p38 (p-p38) was significantly decreased in curcumin-treated SCs. These results show that curcumin's effects on SCs differ remarkably to its effects on olfactory glia, suggesting that subtypes of closely related glia can be differentially stimulated by curcumin. Overall these results demonstrate that the therapeutically beneficial activities of glia can be differentially enhanced by curcumin which could be used to improve outcomes of neural repair therapies.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Curcumina/farmacología , Fármacos del Sistema Nervioso Periférico/farmacología , Seudópodos/efectos de los fármacos , Células de Schwann/efectos de los fármacos , Animales , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Ratones Transgénicos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fagocitosis/efectos de los fármacos , Fagocitosis/fisiología , Seudópodos/fisiología , Células de Schwann/citología , Células de Schwann/fisiología , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...