Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 9(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861772

RESUMEN

In this study, five allometric models were used to estimate the single leaf area of three well-known medicinal and aromatic plants (MAPs) species, namely basil (Ocimum basilicum L.), mint (Mentha spp.), and sage (Salvia spp.). MAPs world production is expected to rise up to 5 trillion US$ by 2050 and, therefore, there is a high interest in developing research related to this horticultural sector. Calibration of the models was obtained separately for three selected species by analyzing (a) the cultivar variability-i.e., 5 cultivars of basil (1094 leaves), 4 of mint (901 leaves), and 5 of sage (1103 leaves)-in the main two traits related to leaf size (leaf length, L, and leaf width, W) and (b) the relationship between these traits and single leaf area (LA). Validation of the chosen models was obtained for each species using an independent dataset, i.e., 487, 441, and 418 leaves, respectively, for basil (cv. 'Lettuce Leaf'), mint (cv. 'Comune'), and sage (cv. 'Comune'). Model calibration based on fast-track methodologies, such as those using one measured parameter (one-regressor models: L, W, L2, and W2) or on more accurate two-regressors models (L × W), allowed to achieve different levels of accuracy. This approach highlighted the importance of considering intra-specific variability before applying any models to a certain cultivar to predict single LA. Eventually, during the validation phase, although modeling of single LA based on W2 showed a good fitting (R2basil = 0.948; R2mint = 0.963; R2sage = 0.925), the distribution of the residuals was always unsatisfactory. On the other hand, two-regressor models (based on the product L × W) provided the best fitting and accuracy for basil (R2 = 0.992; RMSE = 0.327 cm2), mint (R2 = 0.998; RMSE = 0.222 cm2), and sage (R2 = 0.998; RMSE = 0.426 cm2).

2.
Plants (Basel) ; 8(7)2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31319530

RESUMEN

In this research, seven different models to predict leaf area (LA) of loquat (Eriobotrya japonica Lindl) were tested and evaluated. This species was chosen due to the relevant importance of its fruit as an appreciated early summer product and of its leaves and flower as a source of additional income within the nutraceutical and functional food markets. The analysis (calibration and validation) was made using a large dataset (2190) of leaf width (W), leaf length (L), and single LA collected in ten common loquat cultivars. During the analysis, the results obtained using one- and two-regressor models were also evaluated to assess the need for fast measurements against different levels of accuracy achieved during the final estimate. The analysis permitted to finally select two different models: 1) a model based on a single measurement and quadratic relationship between the single LA and W (R2 = 0.894; root mean squared error [RMSE] = 12.98) and another model 2) based, instead, on two measurements (L and W), and on the linear relationship between single LA and the product of L × W (R2 = 0.980; RMSE = 5.61). Both models were finally validated with an independent dataset (cultivar 'Tanaka') confirming the quality of fitting and accuracy already observed during the calibration phase. The analysis permitted to select two different models to be used according to the aims and accuracy required by the analysis. One, based on a single-regressor quadratic model and W (rather than L) as a proxy variable, is capable of obtaining a good quality of fitting of the single LA of loquat cultivars (R2 = 0.894; RMSE = 12.98), whereas, the other, a linear two-regressor (i.e., W and L) model, permitted to achieve the highest prediction (R2 = 0.980; RMSE = 5.61) of the observed variable, but double the time required for leaf measurement.

3.
Funct Plant Biol ; 35(10): 1047-1058, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32688853

RESUMEN

In this study, we assess the possibility of using ground penetrating radar (GPR) and electrical resistivity tomography (ERT) as indirect non-destructive techniques for root detection. Two experimental sites were investigated: a poplar plantation [mean height of plants 25.7 m, diameter at breast height (dbh) 33 cm] and a pinewood forest mainly composed of Pinus pinea L. and Pinus pinaster Ait. (mean height 17 m, dbh 29 cm). GPR measures were taken using antennas of 900 and 1500 MHz applied in square and circular grids. ERT was previously tested along 2-D lines, compared with GPR sections and direct observation of the roots, and then using a complete 3-D acquisition technique. Three-dimensional reconstructions using grids of electrodes centred and evenly spaced around the tree were used in all cases (poplar and pine), and repeated in different periods in the pine forest (April, June and September) to investigate the influence of water saturation on the results obtainable. The investigated roots systems were entirely excavated using AIR-SPADE Series 2000. In order to acquire morphological information on the root system, to be compared with the GPR and ERT, poplar and pine roots were scanned using a portable on ground scanning LIDAR. In test sections analysed around the poplar trees, GPR with a high frequency antenna proved to be able to detect roots with very small diameters and different angles, with the geometry of survey lines ruling the intensity of individual reflectors. The comparison between 3-D images of the extracted roots obtained with a laser scan data point cloud and the GPR profile proved the potential of high density 3-D GPR in mapping the entire system in unsaturated soil, with a preference for sandy and silty terrain, with problems arising when clay is predominant. Clutter produced by gravel and pebbles, mixed with the presence of roots, can also be sources of noise for the GPR signals. The work performed on the pine trees shows that the shape, distribution and volume of roots system, can be coupled to the 3-D electrical resistivity variation of the soil model map. Geophysical surveys can be a useful approach to root investigation in describing both the shape and behaviour of the roots in the subsoil.

4.
Funct Plant Biol ; 35(10): 1080-1090, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32688856

RESUMEN

The objectives of this research were to investigate the suitability of advanced technologies like 3D-Laser scanning to acquire fair and sound information on structural and architectural characteristics of poplar stand, and to map topology of above-ground tree structures. The study area was an intensive poplar plantation located ~10 km north-west of the city of Pavia within the 'Parco Regionale del Ticino', Italy. A forest inventory of the poplar stand was conducted in 2005 and three 14-year-old poplar trees were selected and felled. The main architectural characteristics of poplar trees (destructive measurement) were compared with indirect measurement carried out using a portable on-ground scanning LIDAR IMAGER 5003 combined with the JRC-Reconstructor and AMAPmod softwares. The method permitted us to make an accurate estimate of the vertical and horizontal structure of the stand, to evaluate the stem and branches morphology of selected trees at different height in the canopy, and to create and validate multiscale representations of poplar tree architecture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA