Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(3): 201, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932059

RESUMEN

Multiciliated cells (MCCs) project dozens to hundreds of motile cilia from their apical surface to promote the movement of fluids or gametes in the mammalian brain, airway or reproductive organs. Differentiation of MCCs requires the sequential action of the Geminin family transcriptional activators, GEMC1 and MCIDAS, that both interact with E2F4/5-DP1. How these factors activate transcription and the extent to which they play redundant functions remains poorly understood. Here, we demonstrate that the transcriptional targets and proximal proteomes of GEMC1 and MCIDAS are highly similar. However, we identified distinct interactions with SWI/SNF subcomplexes; GEMC1 interacts primarily with the ARID1A containing BAF complex while MCIDAS interacts primarily with BRD9 containing ncBAF complexes. Treatment with a BRD9 inhibitor impaired MCIDAS-mediated activation of several target genes and compromised the MCC differentiation program in multiple cell based models. Our data suggest that the differential engagement of distinct SWI/SNF subcomplexes by GEMC1 and MCIDAS is required for MCC-specific transcriptional regulation and mediated by their distinct C-terminal domains.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Nucleares , Animales , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Diferenciación Celular/genética , Mamíferos
2.
Cell Death Differ ; 29(8): 1596-1610, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35322202

RESUMEN

Multiciliated cells (MCCs) in the brain reside in the ependyma and the choroid plexus (CP) epithelia. The CP secretes cerebrospinal fluid that circulates within the ventricular system, driven by ependymal cilia movement. Tumors of the CP are rare primary brain neoplasms mostly found in children. CP tumors exist in three forms: CP papilloma (CPP), atypical CPP, and CP carcinoma (CPC). Though CPP and atypical CPP are generally benign and can be resolved by surgery, CPC is a particularly aggressive and little understood cancer with a poor survival rate and a tendency for recurrence and metastasis. In contrast to MCCs in the CP epithelia, CPCs in humans are characterized by solitary cilia, frequent TP53 mutations, and disturbances to multiciliogenesis program directed by the GMNC-MCIDAS transcriptional network. GMNC and MCIDAS are early transcriptional regulators of MCC fate differentiation in diverse tissues. Consistently, components of the GMNC-MCIDAS transcriptional program are expressed during CP development and required for multiciliation in the CP, while CPC driven by deletion of Trp53 and Rb1 in mice exhibits multiciliation defects consequent to deficiencies in the GMNC-MCIDAS program. Previous studies revealed that abnormal NOTCH pathway activation leads to CPP. Here we show that combined defects in NOTCH and Sonic Hedgehog signaling in mice generates tumors that are similar to CPC in humans. NOTCH-driven CP tumors are monociliated, and disruption of the NOTCH complex restores multiciliation and decreases tumor growth. NOTCH suppresses multiciliation in tumor cells by inhibiting the expression of GMNC and MCIDAS, while Gmnc-Mcidas overexpression rescues multiciliation defects and suppresses tumor cell proliferation. Taken together, these findings indicate that reactivation of the GMNC-MCIDAS multiciliogenesis program is critical for inhibiting tumorigenesis in the CP, and it may have therapeutic implications for the treatment of CPC.


Asunto(s)
Carcinoma , Proteínas de Ciclo Celular , Neoplasias del Plexo Coroideo , Proteínas Nucleares , Animales , Carcinoma/genética , Proteínas de Ciclo Celular/genética , Neoplasias del Plexo Coroideo/genética , Neoplasias del Plexo Coroideo/patología , Proteínas Hedgehog/genética , Humanos , Ratones , Proteínas Nucleares/genética
3.
Development ; 146(8)2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30936178

RESUMEN

GEMC1 and MCIDAS are geminin family proteins that transcriptionally activate E2F4/5-target genes during multiciliogenesis, including Foxj1 and Ccno Male mice that lacked Gemc1, Mcidas or Ccno were found to be infertile, but the origin of this defect has remained unclear. Here, we show that all three genes are necessary for the generation of functional multiciliated cells in the efferent ducts that are required for spermatozoa to enter the epididymis. In mice that are mutant for Gemc1, Mcidas or Ccno, we observed a similar spectrum of phenotypes, including thinning of the seminiferous tubule epithelia, dilation of the rete testes, sperm agglutinations in the efferent ducts and lack of spermatozoa in the epididymis (azoospermia). These data suggest that defective efferent duct development is the dominant cause of male infertility in these mouse models, and this likely extends to individuals with the ciliopathy reduced generation of multiple motile cilia with mutations in MCIDAS and CCNO.


Asunto(s)
Proteínas de Ciclo Celular/deficiencia , ADN Glicosilasas/deficiencia , Conductos Eyaculadores/metabolismo , Conductos Eyaculadores/patología , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Proteínas Nucleares/deficiencia , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , ADN Glicosilasas/genética , Epidídimo/metabolismo , Epidídimo/patología , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Mutantes , Proteínas Nucleares/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Testículo/metabolismo , Testículo/patología
4.
Oncotarget ; 8(59): 99261-99273, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29245899

RESUMEN

Cyclin O (encoded by CCNO) is a member of the cyclin family with regulatory functions in ciliogenesis and apoptosis. Homozygous CCNO mutations have been identified in human patients with Reduced Generation of Multiple Motile Cilia (RGMC) and conditional inactivation of Ccno in the mouse recapitulates some of the pathologies associated with the human disease. These include defects in the development of motile cilia and hydrocephalus. To further investigate the functions of Ccno in vivo, we have generated a new mouse model characterized by the constitutive loss of Ccno in all tissues and followed a cohort during ageing. Ccno-/- mice were growth impaired and developed hydrocephalus with high penetrance. In addition, some Ccno+/- mice also developed hydrocephalus and affected Ccno-/- and Ccno+/- mice exhibited additional CNS defects including cortical thinning and hippocampal abnormalities. In addition to the CNS defects, both male and female Ccno-/- mice were infertile and female mice exhibited few motile cilia in the oviduct. Our results further establish CCNO as an important gene for normal development and suggest that heterozygous CCNO mutations could underlie hydrocephalus or diminished fertility in some human patients.

5.
EMBO J ; 35(9): 942-60, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-26933123

RESUMEN

The generation of multiciliated cells (MCCs) is required for the proper function of many tissues, including the respiratory tract, brain, and germline. Defects in MCC development have been demonstrated to cause a subclass of mucociliary clearance disorders termed reduced generation of multiple motile cilia (RGMC). To date, only two genes, Multicilin (MCIDAS) and cyclin O (CCNO) have been identified in this disorder in humans. Here, we describe mice lacking GEMC1 (GMNC), a protein with a similar domain organization as Multicilin that has been implicated in DNA replication control. We have found that GEMC1-deficient mice are growth impaired, develop hydrocephaly with a high penetrance, and are infertile, due to defects in the formation of MCCs in the brain, respiratory tract, and germline. Our data demonstrate that GEMC1 is a critical regulator of MCC differentiation and a candidate gene for human RGMC or related disorders.


Asunto(s)
Proteínas Portadoras/metabolismo , Diferenciación Celular , Cilios/genética , Cilios/fisiología , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/patología , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Ratones , Ratones Noqueados
6.
Nat Commun ; 6: 7676, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26158450

RESUMEN

CEP63 is a centrosomal protein that facilitates centriole duplication and is regulated by the DNA damage response. Mutations in CEP63 cause Seckel syndrome, a human disease characterized by microcephaly and dwarfism. Here we demonstrate that Cep63-deficient mice recapitulate Seckel syndrome pathology. The attrition of neural progenitor cells involves p53-dependent cell death, and brain size is rescued by the deletion of p53. Cell death is not the result of an aberrant DNA damage response but is triggered by centrosome-based mitotic errors. In addition, Cep63 loss severely impairs meiotic recombination, leading to profound male infertility. Cep63-deficient spermatocytes display numerical and structural centrosome aberrations, chromosome entanglements and defective telomere clustering, suggesting that a reduction in centrosome-mediated chromosome movements underlies recombination failure. Our results provide novel insight into the molecular pathology of microcephaly and establish a role for the centrosome in meiotic recombination.


Asunto(s)
Proteínas de Ciclo Celular/genética , Centrosoma/metabolismo , Enanismo/genética , Recombinación Homóloga/genética , Meiosis/genética , Microcefalia/genética , Espermatocitos/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Daño del ADN , Facies , Inmunohistoquímica , Masculino , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Recombinación Genética/genética , Recuento de Espermatozoides , Espermatocitos/patología
7.
Nucleic Acids Res ; 43(15): 7371-87, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26160886

RESUMEN

The maintenance of genome stability is critical for the suppression of diverse human pathologies that include developmental disorders, premature aging, infertility and predisposition to cancer. The DNA damage response (DDR) orchestrates the appropriate cellular responses following the detection of lesions to prevent genomic instability. The MRE11 complex is a sensor of DNA double strand breaks (DSBs) and plays key roles in multiple aspects of the DDR, including DNA end resection that is critical for signaling and DNA repair. The MRE11 complex has been shown to function both upstream and in concert with the 5'-3' exonuclease EXO1 in DNA resection, but it remains unclear to what extent EXO1 influences DSB responses independently of the MRE11 complex. Here we examine the genetic relationship of the MRE11 complex and EXO1 during mammalian development and in response to DNA damage. Deletion of Exo1 in mice expressing a hypomorphic allele of Nbs1 leads to severe developmental impairment, embryonic death and chromosomal instability. While EXO1 plays a minimal role in normal cells, its loss strongly influences DNA replication, DNA repair, checkpoint signaling and damage sensitivity in NBS1 hypomorphic cells. Collectively, our results establish a key role for EXO1 in modulating the severity of hypomorphic MRE11 complex mutations.


Asunto(s)
Proteínas de Ciclo Celular/genética , Enzimas Reparadoras del ADN/fisiología , Reparación del ADN , Desarrollo Embrionario , Exodesoxirribonucleasas/fisiología , Proteínas Nucleares/genética , Alelos , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Camptotecina/toxicidad , Células Cultivadas , Inestabilidad Cromosómica , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/genética , Replicación del ADN , Proteínas de Unión al ADN , Desarrollo Embrionario/genética , Exodesoxirribonucleasas/genética , Puntos de Control de la Fase G2 del Ciclo Celular , Eliminación de Gen , Genes Letales , Ratones , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...