Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Physiol Rev ; 97(1): 89-134, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27807201

RESUMEN

Ion channels represent the molecular entities that give rise to the cardiac action potential, the fundamental cellular electrical event in the heart. The concerted function of these channels leads to normal cyclical excitation and resultant contraction of cardiac muscle. Research into cardiac ion channel regulation and mutations that underlie disease pathogenesis has greatly enhanced our knowledge of the causes and clinical management of cardiac arrhythmia. Here we review the molecular determinants, pathogenesis, and pharmacology of congenital Long QT Syndrome. We examine mechanisms of dysfunction associated with three critical cardiac currents that comprise the majority of congenital Long QT Syndrome cases: 1) IKs, the slow delayed rectifier current; 2) IKr, the rapid delayed rectifier current; and 3) INa, the voltage-dependent sodium current. Less common subtypes of congenital Long QT Syndrome affect other cardiac ionic currents that contribute to the dynamic nature of cardiac electrophysiology. Through the study of mutations that cause congenital Long QT Syndrome, the scientific community has advanced understanding of ion channel structure-function relationships, physiology, and pharmacological response to clinically employed and experimental pharmacological agents. Our understanding of congenital Long QT Syndrome continues to evolve rapidly and with great benefits: genotype-driven clinical management of the disease has improved patient care as precision medicine becomes even more a reality.


Asunto(s)
Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Animales , Humanos
2.
Circulation ; 107(25): 3216-22, 2003 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12796143

RESUMEN

BACKGROUND: Mutations in SCN5A, the gene coding for the human cardiac Na+ channel alpha-subunit, are associated with variant 3 of the long-QT syndrome (LQT-3). Several LQT-3 mutations promote a mode of Na+ channel gating in which a fraction of channels fail to inactivate, contributing sustained Na+ channel current (Isus), which can delay repolarization and prolong the QT interval. Here, we investigate the possibility that stimulation of protein kinase C (PKC) may modulate Isus, which is prominent in disease-related Na+ channel mutations. METHODS AND RESULTS: We measured the effects of PKC stimulation on Na+ currents in human embryonic kidney (HEK 293) cells expressing 3 previously reported disease-associated Na+ channel mutations (Y1795C, Y1795H, and DeltaKPQ). We find that the PKC activator 1-oleoyl-2-acetyl-sn-glycerol (OAG) significantly reduced Isus in the mutant but not wild-type channels. The effect of OAG on Isus was reduced by the PKC inhibitor staurosporine (2.5 micromol/L), ablated by the mutation S1503A, and mimicked by the mutation S1503D. Isus recorded in myocytes isolated from mice expressing DeltaKPQ channels was similarly inhibited by OAG exposure or stimulation of alpha1-adrenergic receptors by phenylephrine. The actions of phenylephrine on Isus were blocked by the PKC inhibitor chelerythrine. CONCLUSIONS: We conclude that stimulation of PKC inhibits channel bursting in disease-linked mutations via phosphorylation-induced alteration of the charge at residue 1503 of the Na+ channel alpha-subunit. Sympathetic nerve activity may contribute directly to suppression of mutant channel bursting via alpha-adrenergic receptor-mediated stimulation of PKC.


Asunto(s)
Activación del Canal Iónico , Síndrome de QT Prolongado/fisiopatología , Proteína Quinasa C/metabolismo , Canales de Sodio/metabolismo , Animales , Células Cultivadas , Diglicéridos/farmacología , Activadores de Enzimas/farmacología , Inhibidores Enzimáticos/farmacología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Riñón/citología , Riñón/efectos de los fármacos , Riñón/metabolismo , Síndrome de QT Prolongado/genética , Ratones , Ratones Mutantes , Células Musculares/citología , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Canal de Sodio Activado por Voltaje NAV1.5 , Técnicas de Placa-Clamp , Fosforilación/efectos de los fármacos , Proteína Quinasa C/efectos de los fármacos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Sodio/metabolismo , Canales de Sodio/genética , Relación Estructura-Actividad , Sistema Nervioso Simpático/fisiología , Transfección
3.
Circ Res ; 89(4): 336-42, 2001 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-11509450

RESUMEN

Many members of the two-pore-domain potassium (K(+)) channel family have been detected in the mammalian heart but the endogenous correlates of these channels still have to be identified. We investigated whether I(KAA), a background K(+) current activated by negative pressure (stretch) and by arachidonic acid (AA) and sensitive to intracellular acidification, could be the native correlate of TREK-1 in adult rat atrial cells. Using the inside-out configuration of the patch-clamp technique, we found that I(KAA), like TREK-1, was outwardly rectifying in physiological K(+) conditions, with a conductance of 41 pS at +50 mV. Like TREK-1, I(KAA) was reversibly activated by clinical concentrations of volatile anesthetics (in mmol/L, chloroform 0.18, halothane 0.11, and isoflurane 0.69). In cell-attached experiments, I(KAA) was inhibited by chlorophenylthio-cAMP (500 micromol/L) and also by stimulation of beta-adrenergic receptors with isoproterenol (1 micromol/L). In addition, TREK-1 mRNAs were detected in all cardiac tissues, and the TREK-1 protein was immunolocalized in isolated atrial myocytes. Such a background potassium channel might contribute to the positive inotropic effects produced by beta-adrenergic stimulation of the heart. It might also be involved in the regulation of the atrial natriuretic peptide secretion.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Anestésicos por Inhalación/farmacología , Atrios Cardíacos/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio/efectos de los fármacos , Animales , Ácido Araquidónico/farmacología , Separación Celular , Cloroformo/farmacología , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Halotano/farmacología , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Isoflurano/farmacología , Isoproterenol/farmacología , Masculino , Miocardio/citología , Miocardio/metabolismo , Técnicas de Placa-Clamp , Potasio/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , Ratas , Ratas Wistar , Estimulación Química
4.
Biochem Biophys Res Commun ; 282(1): 249-56, 2001 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-11263999

RESUMEN

We isolated three novel 2P domain K(+) channel subunits from human. The first two subunits, TALK-1 and TALK-2, are distantly related to TASK-2. Their genes form a tight cluster of 25 kb on chromosome 6p21.1-p21.2. The corresponding channels produce quasi-instantaneous and non-inactivating currents that are activated at alkaline pHs. These currents are sensitive to Ba(2+), quinine, quinidine, chloroform, halothane, and isoflurane but are not affected by TEA, 4-AP, Cs(+), arachidonic acid, hypertonic solutions, agents activating protein kinases C and A, changes of internal Ca(2+) concentrations, and by activation of G(i) and G(q) proteins. TALK-1 is exclusively expressed in the pancreas. TALK-2 is mainly expressed in the pancreas, but is also expressed at a lower level in liver, placenta, heart, and lung. We also cloned a third subunit, named hTHIK-2 which is present in many tissues with high levels again in the pancreas but which could not be functionally expressed.


Asunto(s)
Páncreas/metabolismo , Canales de Potasio/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Clonación Molecular , Cartilla de ADN , Humanos , Datos de Secuencia Molecular , Canales de Potasio/química , Canales de Potasio/efectos de los fármacos , Canales de Potasio/genética , Homología de Secuencia de Aminoácido , Xenopus
5.
Br J Pharmacol ; 131(3): 569-77, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11015309

RESUMEN

Acetylcholine (ACh) is an important neuromodulator of cardiac function that is released upon stimulation of the vagus nerve. Despite numerous reports on activation of I(KACh) by acetylcholine in cardiomyocytes, it has yet to be demonstrated what role this channel plays in cardiac conduction. We studied the effect of tertiapin, a bee venom peptide blocking I(KACh), to evaluate the role of I(KACh) in Langendorff preparations challenged with ACh. ACh (0.5 microM) reproducibly and reversibly induced complete atrioventricular (AV) blocks in retroperfused guinea-pig isolated hearts (n=12). Tertiapin (10 to 300 nM) dose-dependently and reversibly prevented the AV conduction decrements and the complete blocks in unpaced hearts (n=8, P<0.01). Tertiapin dose-dependently blunted the ACh-induced negative chronotropic response from an ACh-induced decrease in heart rate of 39+/-16% in control conditions to 3+/-3% after 300 nM tertiapin (P=0.01). These effects were not accompanied by any significant change in QT intervals. Tertiapin blocked I(KACh) with an IC(50) of 30+/-4 nM with no significant effect on the major currents classically associated with cardiac repolarisation process (I(Kr), I(Ks), I(to1), I:(sus), I(K1) or I(KATP)) or AV conduction (I(Na) and I(Ca(L))). In summary, tertiapin prevents dose-dependently ACh-induced AV blocks in mammalian hearts by inhibiting I(KACh).


Asunto(s)
Acetilcolina/farmacología , Venenos de Abeja/farmacología , Bloqueo Cardíaco/inducido químicamente , Canales de Potasio de Rectificación Interna , Canales de Potasio/metabolismo , Animales , Nodo Atrioventricular/efectos de los fármacos , Nodo Atrioventricular/fisiología , Interacciones Farmacológicas , Electrocardiografía/efectos de los fármacos , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Cobayas , Corazón/efectos de los fármacos , Corazón/fisiología , Bloqueo Cardíaco/fisiopatología , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Oocitos , Bloqueadores de los Canales de Potasio , Conejos , Xenopus laevis
6.
J Biol Chem ; 275(37): 28398-405, 2000 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-10880510

RESUMEN

Mechano-sensitive and fatty acid-activated K(+) belong to the structural class of K(+) channel with two pore domains. Here, we report the isolation and the characterization of a novel member of this family. This channel, called TREK2, is closely related to TREK1 (78% of homology). Its gene is located on chromosome 14q31. TREK2 is abundantly expressed in pancreas and kidney and to a lower level in brain, testis, colon, and small intestine. In the central nervous system, TREK2 has a widespread distribution with the highest levels of expression in cerebellum, occipital lobe, putamen, and thalamus. In transfected cells, TREK2 produces rapidly activating and non-inactivating outward rectifier K(+) currents. The single-channel conductance is 100 picosiemens at +40 mV in 150 mm K(+). The currents can be strongly stimulated by polyunsaturated fatty acid such as arachidonic, docosahexaenoic, and linoleic acids and by lysophosphatidylcholine. The channel is also activated by acidification of the intracellular medium. TREK2 is blocked by application of intracellular cAMP. As with TREK1, TREK2 is activated by the volatile general anesthetics chloroform, halothane, and isoflurane and by the neuroprotective agent riluzole. TREK2 can be positively or negatively regulated by a variety of neurotransmitter receptors. Stimulation of the G(s)-coupled receptor 5HT4sR or the G(q)-coupled receptor mGluR1 inhibits channel activity, whereas activation of the G(i)-coupled receptor mGluR2 increases TREK2 currents. These multiple types of regulations suggest that TREK2 plays an important role as a target of neurotransmitter action.


Asunto(s)
Ácidos Grasos Insaturados/farmacología , Proteínas de Unión al GTP/fisiología , Lisofosfolípidos/farmacología , Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio/fisiología , Receptores de Neurotransmisores/fisiología , Secuencia de Aminoácidos , Mapeo Cromosómico , Clonación Molecular , AMP Cíclico/fisiología , Humanos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Canales de Potasio/efectos de los fármacos , Canales de Potasio/genética
7.
J Mol Cell Cardiol ; 32(4): 639-53, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10756120

RESUMEN

Ventricular hypertrophy is associated with an increase in action potential (AP) duration which is potentially arrhythmogenic. The implication of the Na-Ca exchange current (I(Na-Ca)) in the lengthening of the AP is controversial. The role of this current in the increased duration of the low plateau of the AP in hypertrophied adult rat ventricular myocytes by simulated chronic high-altitude exposure ( approximately 4500 m) was evaluated. Electrophysiological experiments were carried out on isolated right ventricular myocytes from exposed and control rats with the perforated patch or the conventional whole-cell technique in current or in voltage clamp condition. With the two techniques, a significant increase of the low plateau duration was observed in hypertrophied myocytes as compared to controls. The low plateau in hypertrophied myocytes was depressed when Na was replaced by Li and was no longer recorded when intracellular Ca was buffered with EGTA. Inward tail currents, evoked either on repolarization to -80 mV following a depolarizing pulse to +10 mV or by interrupted AP technique, were greater in hypertrophied than in control myocytes and were abolished when Na was replaced by Li or when intracellular Ca was buffered with EGTA, indicating an increased Na-Ca exchange activity. The Li-sensitive current-voltage curves, obtained by a voltage clamp ramp protocol with an intracellular calcium buffered solution, were not significantly different in both hypertrophied and control myocytes, suggesting no modification in the density of the Na-Ca exchange protein. This was corroborated by the lack of difference in NCX1 mRNA levels between right ventricles from control and exposed rats. We conclude that increased duration of the low plateau of rat ventricular AP in altitude cardiac hypertrophy may be attributed to an increase of the inward I(Na-Ca). This augmented I(Na-Ca)may result from a modification in the intracellular Ca homeostasis.


Asunto(s)
Altitud , Hipertrofia Ventricular Derecha/metabolismo , Intercambiador de Sodio-Calcio/genética , Potenciales de Acción , Animales , Electrofisiología , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/fisiopatología , Masculino , Miocardio/citología , Ratas , Ratas Sprague-Dawley , Intercambiador de Sodio-Calcio/fisiología
8.
Eur J Pharmacol ; 390(1-2): 95-101, 2000 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-10708711

RESUMEN

Halothane protects the heart against the reperfusion injury observed after an ischemia. In ischemic or anoxic conditions, a large ATP-sensitive K(+) (K(ATP)) conductance is supposed to provide an endogenous protection to the myocardium. In this study, we tested the possibility that halothane acted by modulating this conductance. Isolated guinea-pig cardiomyocytes were successively studied in current clamp and in voltage-clamp conditions. Action potentials regulation by halothane was tested in control conditions and in situations where the K(ATP) channels were activated. In control conditions, halothane decreased action potential duration of myocytes but did not significantly alter the inward rectifying K(+) current. Conversely, halothane lengthened action potential of cells in which the K(ATP) conductance was activated, by inhibiting the K(ATP) current. In ischemic conditions, simultaneous shortening of long action potentials and lengthening of shortened ones would be expected to homogenize the absolute refractory period at the border between normoxic and anoxic zones. This effect, together with a decrease in calcium load, could protect the myocardium against re-entrant arrhythmias.


Asunto(s)
Anestésicos por Inhalación/farmacología , Halotano/farmacología , Corazón/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Cromanos/farmacología , Cobayas , Ventrículos Cardíacos/efectos de los fármacos , Técnicas In Vitro , Masculino , Miocardio/citología , Miocardio/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio/agonistas , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Periodo Refractario Electrofisiológico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA