Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 5: 9824, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25965993

RESUMEN

The conserved histone methyltransferase Dot1 establishes an H3K79 methylation pattern consisting of mono-, di- and trimethylation states on histone H3 via a distributive mechanism. This mechanism has been shown to be important for the regulation of the different H3K79 methylation states in yeast. Dot1 enzymes in yeast, Trypanosoma brucei (TbDot1A and TbDot1B, which methylate H3K76) and human (hDot1L) generate very divergent methylation patterns. To understand how these species-specific methylation patterns are generated, the methylation output of the Dot1 enzymes was compared by expressing them in yeast at various expression levels. Computational simulations based on these data showed that the Dot1 enzymes have highly distinct catalytic properties, but share a distributive mechanism. The mechanism of methylation and the distinct rate constants have implications for the regulation of H3K79/K76 methylation. A mathematical model of H3K76 methylation during the trypanosome cell cycle suggests that temporally-regulated consecutive action of TbDot1A and TbDot1B is required for the observed regulation of H3K76 methylation states.


Asunto(s)
Ciclo Celular/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Modelos Biológicos , Proteínas Nucleares/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Trypanosoma brucei brucei/enzimología , Catálisis , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Histonas/química , Histonas/genética , Humanos , Metilación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidad de la Especie , Trypanosoma brucei brucei/genética
2.
G3 (Bethesda) ; 3(8): 1261-72, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23708297

RESUMEN

Proteins are not static entities. They are highly mobile, and their steady-state levels are achieved by a balance between ongoing synthesis and degradation. The dynamic properties of a protein can have important consequences for its function. For example, when a protein is degraded and replaced by a newly synthesized one, posttranslational modifications are lost and need to be reincorporated in the new molecules. Protein stability and mobility are also relevant for the duplication of macromolecular structures or organelles, which involves coordination of protein inheritance with the synthesis and assembly of newly synthesized proteins. To measure protein dynamics, we recently developed a genetic pulse-chase assay called recombination-induced tag exchange (RITE). RITE has been successfully used in Saccharomyces cerevisiae to measure turnover and inheritance of histone proteins, to study changes in posttranslational modifications on aging proteins, and to visualize the spatiotemporal inheritance of protein complexes and organelles in dividing cells. Here we describe a series of successful RITE cassettes that are designed for biochemical analyses, genomics studies, as well as single cell fluorescence applications. Importantly, the genetic nature and the stability of the tag switch offer the unique possibility to combine RITE with high-throughput screening for protein dynamics mutants and mechanisms. The RITE cassettes are widely applicable, modular by design, and can therefore be easily adapted for use in other cell types or organisms.


Asunto(s)
Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Inmunoprecipitación de Cromatina , Técnicas de Sustitución del Gen , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Histonas/metabolismo , Integrasas/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
EMBO Rep ; 12(9): 956-62, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21760613

RESUMEN

Post-translational modifications of histone proteins have a crucial role in regulating gene expression. If efficiently re-established after chromosome duplication, histone modifications could help propagate gene expression patterns in dividing cells by epigenetic mechanisms. We used an integrated approach to investigate the dynamics of the conserved methylation of histone H3 Lys 79 (H3K79) by Dot1. Our results show that methylation of H3K79 progressively changes after histone deposition, which is incompatible with a rapid copy mechanism. Instead, methylation accumulates on ageing histones, providing the cell with a timer mechanism to directly couple cell-cycle length to changes in chromatin modification on the nucleosome core.


Asunto(s)
Envejecimiento/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Metilación , Proteínas Nucleares/genética , Nucleosomas , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...