Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Environ Sci Pollut Res Int ; 30(22): 62137-62150, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36940023

RESUMEN

The aim of this research was to develop a model for a solar refrigeration system (SRS) that utilizes an External Compound Parabolic Collector and a thermal energy storage system (TESS) for solar water heating in Chennai, India. The system parameters were optimized using TRNSYS software by varying factors such as collector area, mass flow rate of heat transfer fluid, and storage system volume and height. The resulting optimized system was found to meet 80% of hot water requirements for the application on an annual basis, with an annual collector energy efficiency of 58% and an annual TESS exergy efficiency of 64% for a discharge period of 6 h per day. In addition, the thermal performance of 3.5 kW SRS was studied by connecting it to an optimized solar water heating system (SWHS). The system was found to generate an average cooling energy of 12.26 MJ/h annually, with a coefficient of performance of 0.59. By demonstrating the ability to efficiently generate both hot water and cooling energy, the results of this study indicate the potential for utilizing a SWHS in combination with STST and SRS. The optimization of system parameters and the use of exergy analysis provide valuable insights into the thermal behavior and performance of the system, which can inform future designs and improve the overall efficiency of similar systems.


Asunto(s)
Líquidos Corporales , Energía Solar , Refrigeración , India , Frío , Agua
3.
Crit Rev Anal Chem ; : 1-24, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36724894

RESUMEN

Carbon nanotubes (CNTs), are safe, biocompatible, bioactive, and biodegradable materials, and have sparked a lot of attention due to their unique characteristics in a variety of applications, including medical and dye industries, paper manufacturing and water purification. CNTs also have a strong film-forming potential, permitting them to be widely employed in constructing sensors and biosensors. This review concentrates on the application of CNT-based nanocomposites in the production of electrochemical sensors and biosensors. It emphasizes the synthesis and optimization of CNT-based sensors for a range of applications and outlines the benefits of using CNTs for biomolecule immobilization. In addition, the use of molecularly imprinted polymer (MIP)-CNTs in the production of electrochemical sensors is also discussed. The challenges faced by the current CNTs-based sensors, along with some the future perspectives and their future opportunities, are also briefly explained in this paper.


RESEARCH HIGHLIGHTSReview article on advanced Carbon-Nanotube (CNT)-based sensors and biosensors.The advantages of using CNTs for biomolecule immobilization and in electrochemical sensors and biosensors are discussed.The use of molecularly imprinted polymer-CNT nanocomposites in the production of electrochemical sensors is also discussed.Several characteristics, including sensor manufacturing, linear ranges, detection limits, and repeatability, are described in depth.Challenges and prospects using CNTs modified sensors have been proposed.

4.
Nanoscale Adv ; 5(4): 992-1010, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36798507

RESUMEN

The current COVID-19 pandemic, with its numerous variants including Omicron which is 50-70% more transmissible than the previously dominant Delta variant, demands a fast, robust, cheap, and easily deployed identification strategy to reduce the chain of transmission, for which biosensors have been shown as a feasible solution at the laboratory scale. The use of nanomaterials has significantly enhanced the performance of biosensors, and the addition of CNTs has increased detection capabilities to an unrivaled level. Among the various CNT-based detection systems, CNT-based field-effect transistors possess ultra-sensitivity and low-noise detection capacity, allowing for immediate analyte determination even in the presence of limited analyte concentrations, which would be typical of early infection stages. Recently, CNT field-effect transistor-type biosensors have been successfully used in the fast diagnosis of COVID-19, which has increased research and commercial interest in exploiting current developments of CNT field-effect transistors. Recent progress in the design and deployment of CNT-based biosensors for viral monitoring are covered in this paper, as are the remaining obstacles and prospects. This work also highlights the enormous potential for synergistic effects of CNTs used in combination with other nanomaterials for viral detection.

5.
Environ Sci Pollut Res Int ; 29(55): 82709-82728, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36223015

RESUMEN

Coronavirus disease 2019 (COVID-19) has delayed global economic growth, which has affected the economic life globally. On the one hand, numerous elements in the environment impact the transmission of this new coronavirus. Every country in the Middle East and North Africa (MENA) area has a different population density, air quality and contaminants, and water- and land-related conditions, all of which influence coronavirus transmission. The World Health Organization (WHO) has advocated fast evaluations to guide policymakers with timely evidence to respond to the situation. This review makes four unique contributions. One, many data about the transmission of the new coronavirus in various sorts of settings to provide clear answers to the current dispute over the virus's transmission were reviewed. Two, highlight the most significant application of machine learning to forecast and diagnose severe acute respiratory syndrome coronavirus (SARS-CoV-2). Three, our insights provide timely and accurate information along with compelling suggestions and methodical directions for investigators. Four, the present study provides decision-makers and community leaders with information on the effectiveness of environmental controls for COVID-19 dissemination.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Aprendizaje Automático , Organización Mundial de la Salud , África del Norte/epidemiología
6.
Environ Sci Pollut Res Int ; 29(38): 57453-57465, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35349068

RESUMEN

The availability of drinkable water, along with food and air, is a fundamental human necessity. Because of the presence of higher amounts of salt and pollution, direct use of water from sources such as lakes, sea, rivers, and subsurface water reservoirs is not normally suggested. Solar is still a basic technology that can use solar energy to transform accessible waste or brackish water into drinkable water. Exergy analysis is a strong inferential technique for evaluating the performance of thermal systems. Exergy is becoming more popular as a predictive tool for analysis, and there is a rising interest in using it. In this paper, performance analysis on the aspect of energy and exergy from the proposed solar still (PSS) (conventional solar still with the photovoltaic modules-AC heater) was analyzed on three different water depths (Wd) conditions (1, 2, and 3 cm). Using a solar still with an electric heater, the daily potable water production was found as 8.54, 6.37, and 4.43 kg, for the variations in water depth (Wd) of 1, 2, and 3 cm respectively. The energy and exergy efficiency of the PSS at the Wd of 1, 2, and 3 cm were 75.67, 51.45, and 37.21% and 5.08, 2.29, and 1.03%, respectively. At 1 cm Wd, PSS produced the maximum freshwater yield as compared to the other two water depths. When the Wd is increased from 1 to 2 cm and from 1 to 3 cm, the yield is decreased up to 27.3 and 52.7%, respectively. Similarly, the energy and exergy efficiency is decreased up to 36.8 and 53.2% and 50.4 and 80.6%, respectively. The water cost of the modified solar still is calculated as 0.028 $/kg for the least water thickness.


Asunto(s)
Energía Solar , Luz Solar , Contaminación Ambiental , Agua Dulce , Humanos , Agua
7.
Environ Sci Pollut Res Int ; 29(27): 40903-40920, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35088279

RESUMEN

The demand for fresh water is rapidly growing as a consequence of the increasing population and urbanization. Tubular solar still offers larger evaporative and condensing surface area as compared to single slope solar still. The aim of this study is to improve the performance of tubular solar still by employing eggshell powder (collected from Babcobb Broilers chicken) as the sensible energy storage material in form of bed, placed inside the basin of still to improve the water production. Results showed that the influence of eggshell powder as energy storage material in the basin improved the average water temperature by 3%, 6.2%, and 3.2% for the water thickness of 10, 15, and 20 mm, respectively. The usage of eggshells as a sensible energy storage in the basin augmented the peak hourly water yield by 67.64% with minimum water thickness. The total observed distillate output from the solar still is 1.45 kg without eggshell powder and 2.67 kg for with eggshell powder in the absorber at the lowest water thickness of 10 mm. TSS with eggshell powder as energy storage has a daily energy efficiency of 48.17%, 42.38%, and 36.38%, respectively, for water thicknesses of 10, 15, and 20 mm in the basin. Water thickness of 10, 15, and 20 mm has performance improvement ratios of 1.83, 1.81, and 1.78, respectively. Using cost analysis, it was found that the cost of drinkable water generated using eggshell as an energy storage material is 0.011$/kg, but the cost of water by traditional still without any storage material was 0.021$/kg.


Asunto(s)
Agua Potable , Energía Solar , Animales , Pollos , Cáscara de Huevo , Polvos , Luz Solar , Agua
8.
Environ Sci Pollut Res Int ; 29(9): 13188-13200, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34585351

RESUMEN

This work aims to explore the optical and thermal conversion characteristics of activated carbon-solar glycol nanofluids with various volume fractions namely 0.2, 0.4, and 0.6%, respectively. Kigelia africana leaves were synthesized into porous activated carbon nanomaterials by using the high-temperature sintering process and the pyrolysis process in a muffle furnace. The experimental investigation was carried out with different nanofluid concentrations by using the solar simulator. Nanofluids were heated with the assistance of a solar simulator test system and the convection/conduction heat loss was decreased by using the glass as an insulating material around the test section. Prepared nanofluid with 0.6 vol% activated carbon augmented the thermal conductivity by 14.36% at 60°C. The maximum temperature difference of 10°C was attained at 0.6% volume concentrations of nanofluid as compared with base fluid (solar glycol). In addition, maximum receiver efficiency of 94.51% was attained at 0.6% volume fractions of activated carbon-based nanofluid compared with solar glycol thru a light radiation time of 600 s. Moreover, activated carbon-based nanofluid exhibited significantly higher absorption efficiency as the majority of the radiation was absorbed by the nanofluid. It is concluded that activated carbon-based nanofluids could be a suitable low-cost highly stable material for developing working fluid for direct absorbance solar collector-based applications.


Asunto(s)
Carbón Orgánico , Luz Solar , Convección , Calor , Conductividad Térmica
9.
Environ Sci Pollut Res Int ; 29(10): 14719-14732, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34618320

RESUMEN

Solar energy is a one-of-a-kind renewable energy source that has many uses, and in the thermal applications, it is receiving more attention and is becoming more feasible. The present work presents numerical and experimental studies to investigate the performance of a parabolic trough solar concentrator (PTC) integrated with a thermal energy storage system. A new receiver design is built that stores thermal energy using phase change material (PCM). A concentric absorber tube with two different kinds of PCM - MgCl2·6H2O and erythritol (filling the annular-space of absorber tube) - were used to construct a PTC, and its thermal performance and thermal efficiency were investigated under two different HTF flow rates of 0.005 kg/s and 0.033 kg/s. Solar energy is transformed into heat, which is then used to store in the PCM before being discharged to cold water, which is the final heat transfer fluid in the receiver's inner pipe. The simultaneous studies of the PTC with and without PCM are investigated. A commercial Mat Lab's operating model through an imperialist competitive algorithm of the entire PTC system is presented, and the numerical results were compared to the experimental results, which were carried out with and without PCM in PTC. With the PCM in PTC (0.005 kg/s and 0.033kg/s), the HTF exhibited gain in peak temperatures of 11°C (erythritol) and 9°C (MgCl2·6H2O) at 0.05 kg/s, whereas the peak temperatures further increase to 14°C (erythritol) and 12°C (MgCl2·6H2O) respectively at 0.033 kg/s, as compared to HTF without PCM. Average thermal efficiency of PTC with HTF flow rate of 0.033 kg/s was highest with usage of erythritol (40.6%), among all the cases. The experimental and predicted thermal efficiency performance indices for different flow rates and PCM are found to be with a deviation of around ± 1.9%, demonstrating the accuracy of the developed numerical model.


Asunto(s)
Energía Solar , Luz Solar , Calor , Temperatura , Agua
10.
Environ Sci Pollut Res Int ; 29(7): 10717-10728, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34528193

RESUMEN

This work aims to develop a novel nanofluid using Therminol-55 (T-55) as heat transfer fluid and multi-wall carbon nanotubes (MWCNTs) as dispersants with various volume concentrations of 0.05, 0.1, 0.3, and 0.5% and assess its thermo-physical properties for solar-thermal applications. The pH values of nanofluid MWCNT/T-55 with various particle loading were too far-flung from the pH (I) value, which confirmed the good dispersion stability of nanofluid. The measured density shows tremendous deviation from predicted density with increasing MWCNT loading owing to the non-considering of microstructural parameters in Pak & Cho correlation predication. The highest augmentation in nanofluid thermal conductivity was 16.83% for 0.5 vol. % MWCNT at 60 °C. The maximum improvement in dynamic viscosity of nanofluid with 0.5 vol. % of MWCNT is found to be 44%, and this rise is reduced at higher temperatures. The thermal effectiveness of the nanofluids demonstrates that nanofluid with all volume fractions of MWCNTs was favorable at higher temperatures in the laminar region. Mouromtseff number ratio decreases with a rise in temperature and MWCNT volume concentration. It is concluded that the excellent thermo-physical properties and prolonged thermal stability of the MWCNT will be highly beneficial in improving the overall performance of various kinds of heat transfer fluids (HTFs) for process heating and solar-thermal applications.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Luz Solar , Conductividad Térmica , Viscosidad
11.
Environ Sci Process Impacts ; 23(7): 923-946, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34165129

RESUMEN

Globally, humanity is facing its most significant challenge in 100 years due to the novel coronavirus, SARS-CoV-2, which is responsible for COVID-19. Under the enormous pressure created by the pandemic, scientists are studying virus transmission mechanisms in order to develop effective mitigation strategies. However, no established methods have been developed to control the spread of this deadly virus. In addition, the ease in lockdown has escalated air pollution which may affect SARS-CoV-2 transmission through attachment to particulates. The present review summarizes the role of graphene nanomaterials, which show antimicrobial behavior and have antiviral efficacy, in reducing the spread of COVID-19. Graphene and its derivatives have excellent antimicrobial efficacy, providing both physical and chemical mechanisms of damage. Coupled with their lightness, optimal properties, and ease of functionalization, they are optimal nanomaterials for coating onto fabrics such as personal protection equipment, face masks and gloves to control the transmission of SARS-CoV-2 effectively. Biosensors using graphene can effectively detect the virus with high accuracy and sensitivity, providing rapid quantification. It is envisioned that the present work will boost the development of graphene-based highly sensitive, accurate and cost-effective diagnostic tools for efficiently monitoring and controlling the spread of COVID-19 and other air-borne viruses.


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Grafito , Contaminantes Atmosféricos/análisis , Ciudades , Control de Enfermedades Transmisibles , Humanos , India , Pandemias , SARS-CoV-2
12.
J Environ Manage ; 290: 112668, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33895445

RESUMEN

The SARS-CoV-2 virus has spread globally and has severely impacted public health and the economy. Hand hygiene, social distancing, and the usage of personal protective equipment are considered the most vital tools in controlling the primary transmission of the virus. Converging evidence indicated the presence of SARS-CoV-2 in wastewater and its persistence over several days, which may create secondary transmission of the virus via waterborne and wastewater pathways. Although, researchers have started focusing on this mode of virus transmission, limited knowledge and societal unawareness of the transmission through wastewater may lead to significant increases in the number of positive cases. To emphasize the severe issue of virus transmission through wastewater and create societal awareness, we present a state of the art critical review on transmission of SARS-CoV-2 in wastewater and the potential remedial strategies to effectively control the viral spread and safeguard society. For low-income countries with high population densities, it is suggested to identify the virus in large scale municipal wastewater plants before following up with one-to-one testing for effective control of the secondary transmission. Ultrafiltration is an effective method for wastewater treatment and usually more than 4 logs of virus removal are achieved while safeguarding good protein permeability. Decentralized wastewater treatment facilities using solar-assisted disinfestation methods are most economical and can be effectively used in hospitals, isolation wards, and medical centers for reducing the risk of transmission from high local concentration sites, especially in tropical countries with abundant solar energy. Disinfection with chlorine, sodium hypochlorite, benzalkonium chloride, and peracetic acid have shown potential in terms of virucidal properties. Biological wastewater treatment using micro-algae will be highly effective in removal of virus and can be incorporated into membrane bio-reaction to achieve excellent virus removal rate. Though promising results have been shown by initial research for inactivation of SARS-CoV-2 in wastewater using physical, chemical and biological based treatment methods, there is a pressing need for extensive investigation of COVID-19 specific disinfectants with appropriate concentrations, their environmental implications, and regular monitoring of transmission. Effective wastewater treatment methods with high virus removal capacity and low treatment costs should be selected to control the virus spread and safeguard society from this deadly virus.


Asunto(s)
COVID-19 , Purificación del Agua , Humanos , Pandemias , SARS-CoV-2 , Aguas Residuales
13.
Environ Sci Pollut Res Int ; 28(28): 37371-37386, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33715121

RESUMEN

This study aims to augment the performance of a solar desalination unit. To experimental examine this idea, a modified solar still with three different microparticles doped in black paint-coated absorber were designed, fabricated, and tested in Jaipur, India. Three different microparticles such as copper, aluminum, and tin with particle size of 50-80 µm with weight concentration of 10% were doped in black paint and then coated on the absorber of solar still. The coated absorber of solar still were compared with the conventional solar still without any microparticle coating to obtain the effect of different coating materials on the water productivity, thermal performance, economic, and environment-economics analysis of solar still. The result showed that under the water depth of 1 cm, coating of copper, aluminum, and tin on absorber augmented the full-day water yield by 33.13, 22.18, and 11.53%, compared to conventional solar still without any coating. In addition, full-day energy and exergy efficiency of solar still with copper-coated absorber exhibited maximum values compared to all other solar stills, owing to the higher thermal conductivity and excellent solar-thermal conversion behaviors of copper. The cost of water per liter estimated through economic analysis was found to be US $ 0.0074 for conventional solar still, which was significantly reduced to US $ 0.0066 in the case of solar still with copper-coated absorber along with the payback time of 2.7 months. The environment-economic assessment estimated that solar still with copper-coated absorber plate has reduced the 13.19 tons of CO2 emission. It is concluded that augmented heat transfer rate from water basin to inner glass surface through utilization of microparticle coating would pave a pathway to develop energy-efficient low-cost solar-based desalination system.


Asunto(s)
Purificación del Agua , Agua , Calor , India , Luz Solar
14.
Environ Sci Pollut Res Int ; 28(3): 3406-3420, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32915451

RESUMEN

Solar desalination is one of the most sustainable solutions to produce freshwater from brackish water. The present research work aims to experimentally investigate the effect of a V-shape concentrator integrated with solar still (SS). The V-shape concentrator integrated with the conventional solar still (CSS) is used to supply the saline water at elevated temperature to the basin of SS, which augments the freshwater yield compared to CSS. The experimental investigation was performed at different brackish water depths of 0.01, 0.02, and 0.03 m, respectively. The SS system was evaluated based on water yield, energy, exergy, concentrator efficiency, and economic analysis. The freshwater yield of the solar still integrated with V-shape concentrator (SSVC) was found to be 5.47, 5.10, and 4.89 L/m2.day, whereas the yield of the CSS was 3.73, 3.27, and 2.91 L/m2 .day at the water depths of 0.01, 0.02, and 0.03 m, respectively. The daily energy and exergy efficiency of CSS were 38.5, 33.5, and 29.4% and 1.9, 1.5, and 0.97 % in the case of 0.01, 0.02, and 0.03m water depth , respectively. However, the integration of concentrator significantly augmented the energy efficiency to 57.4, 51.7, and 44.9% and exergy efficiency to 3.8, 3.3, and 2.8% for the respective water depths . Life cycle studies demonstrated that the freshwater cost per liter for CSS and SSVC were 0.0102 $ and 0.0117 $ respectively, at a water depth of 0.01 m. It was concluded that the addition of V-shape concentrator and minimum water depth is useful to augment the energy efficiency, exergy efficiency, and yield of the SS in the very economical way.


Asunto(s)
Luz Solar , Purificación del Agua , Agua Dulce , Aguas Salinas , Agua
15.
Environ Sci Pollut Res Int ; 27(11): 12332-12344, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31993905

RESUMEN

This work aimed to explore a new technique for improving the performance of solar stills (SSs) through utilizing three different types of a new hybrid structure of heat localization materials (HSHLM) floating on the water surface to increase the evaporation rate as well as water production and minimize heat losses. The three types were exfoliated graphite flakes with wick (type A), carbon foam with wick (type B), and exfoliated graphite flakes with wick and carbon foam (type C). These hybrid structures had good features such as high absorption and hydrophilic capillary forces to interconnected pores for fluid flow through the structure. Two identical SSs were designed, fabricated, and investigated to assess SSs' performance with and without HSHLM (modified and conventional SSs). The obtained results showed that the daily productivity was enhanced by 34.5, 28.6, and 51.8% for type A, type B, and type C, respectively, relative to the conventional one. Moreover, the efficiency of the SS reached about 37.6% for type C; while, it reached about 27% for the conventional SS. Contrary to conventional SSs, the use of HSHLM resulted in increasing the productivity proportional to water depth.


Asunto(s)
Grafito , Purificación del Agua , Calor , Luz Solar , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...