Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem J ; 479(10): 1045-1058, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35502833

RESUMEN

While lignocellulose is a promising source of renewable sugars for microbial fermentations, the presence of inhibitory compounds in typical lignocellulosic feedstocks, such as furfural, has hindered their utilisation. In Escherichia coli, a major route of furfural toxicity is the depletion of NADPH pools due to its use as a substrate by the YqhD enzyme that reduces furfural to its less toxic alcohol form. Here, we examine the potential of exploiting benzyl alcohol dehydrogenases as an alternative means to provide this same catalytic function but using the more abundant reductant NADH, as a strategy to increase the capacity for furfural removal. We determine the biochemical properties of three of these enzymes, from Pseudomonas putida, Acinetobacter calcoaceticus, and Burkholderia ambifaria, which all demonstrate furfural reductase activity. Furthermore, we show that the P. putida and B. ambifaria enzymes are able to provide substantial increases in furfural tolerance in vivo, by allowing more rapid conversion to furfuryl alcohol and resumption of growth. The study demonstrates that methods to seek alternative cofactor dependent enzymes can improve the intrinsic robustness of microbial chassis to feedstock inhibitors.


Asunto(s)
Escherichia coli , Furaldehído , Alcoholes Bencílicos/metabolismo , Escherichia coli/metabolismo , Etanol/metabolismo , Furaldehído/metabolismo , Furaldehído/farmacología , NAD/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA