RESUMEN
BACKGROUND: Procambarus clarkii produces high-quality, delicious meat that is high in protein, low in fat, and rich in calcium and phosphorus. It has become an important aquatic resource in China. Our objectives are (i) to analyze the level of genetic diversity of P. clarkii populations; (ii) to explore the genetic differentiation (Gst); and (iii) to propose appropriate strategies for the conservation. RESULTS: In this study, Shannon's index (I) and Nei's gene diversity index (H) for P. clarkii were high (I = 0.3462 and H = 0.2325 on average and I = 0.6264, H = 0.4377 at the species level) based on the SSR markers. The expected heterozygosity value of 17 microsatellite loci in 25 crayfish populations was 0.9317, the observed heterozygosity value was 0.9121, and the observed number of alleles per locus was 2.000; and the effective number of alleles per locus was 1.8075. Among the P. clarkii populations, the inbreeding coefficient within populations (Fis) was 0.2315, overall inbreeding coefficient (Fit) was 0.4438, genetic differentiation coefficient among populations (Fst) was 0.3145 and gene differentiation (Gst) was 0.4785 based on SSR analyses. The cluster analysis results obtained by unweighted pair-group method with arithmetic mean (UPGMA) analysis, principal coordinate analysis (PCoA) and STRUCTURE analysis were similar. A mantel test showed that the isolation-by-distance pattern was not significant. CONCLUSIONS: The high Gst among P. clarkii populations is attributed to genetic drift and geographic isolation. The results indicated that more P. clarkii populations should be collected when formulating conservation and aquaculture strategies.
Asunto(s)
Animales , Variación Genética , Repeticiones de Microsatélite , Astacoidea/genética , Filogenia , China , Reacción en Cadena de la Polimerasa , Acuicultura , Ambiente Acuático , Humedales , Tamización de Portadores GenéticosRESUMEN
Drug-drug interactions between canagliflozin, a sodium glucose co-transporter 2 inhibitor, and glyburide, metformin, and simvastatin were evaluated in three phase-1 studies in healthy participants. In these open-label, fixed sequence studies, participants received: Study 1-glyburide 1.25 mg/day (Day 1), canagliflozin 200 mg/day (Days 4-8), canagliflozin with glyburide (Day 9); Study 2-metformin 2,000 mg/day (Day 1), canagliflozin 300 mg/day (Days 4-7), metformin with canagliflozin (Day 8); Study 3-simvastatin 40 mg/day (Day 1), canagliflozin 300 mg/day (Days 2-6), simvastatin with canagliflozin (Day 7). Pharmacokinetic parameters were assessed at prespecified intervals. Co-administration of canagliflozin and glyburide did not affect the overall exposure (maximum plasma concentration [Cmax ] and area under the plasma concentration-time curve [AUC]) of glyburide and its metabolites (4-trans-hydroxy-glyburide and 3-cis-hydroxy-glyburide). Canagliflozin did not affect the peak concentration of metformin; however, AUC increased by 20%. Though Cmax and AUC were slightly increased for simvastatin (9% and 12%) and simvastatin acid (26% and 18%) following coadministration with canagliflozin, compared with simvastatin administration alone; however, no effect on active 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitory activity was observed. There were no serious adverse events or hypoglycemic episodes. No drug-drug interactions were observed between canagliflozin and glyburide, metformin, or simvastatin. All treatments were well-tolerated in healthy participants.