Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Foods ; 13(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39123603

RESUMEN

The influence of epigallocatechin gallate (EGCG) on the physicochemical-rheological properties of silver carp surimi gel was investigated. The gel strength, texture, water-holding capacity (WHC), dynamic distribution of water, and rheological properties of surimi gels added with different levels (0, 0.02, 0.04, 0.06, 0.08, and 0.1%) of EGCG were measured. The results showed that with the increase of EGCG content, the gel strength, hardness, WHC, and immobilized water contents of surimi gels showed a trend of first increasing and then decreasing, and EGCG 0.02% and EGCG 0.04% showed better gel performance as compared with the control. EGCG 0.02% had the highest gel strength (406.62 g·cm), hardness (356.67 g), WHC (64.37%), and immobilized water contents (98.958%). The gel performance decreased significantly when the amounts of EGCG were higher than 0.06%. The viscosity, G', and G″ of the rheological properties also showed the same trends. The chemical interaction of surimi gels, secondary structure of myofibrillar protein (MP), and molecular docking results of EGCG and silver carp myosin showed that EGCG mainly affected the structure and aggregation behavior of silver carp myosin through non-covalent interactions such as those of hydrogen bonds, hydrophobic interactions, and electrostatic interactions. The microstructures of EGCG 0.02% and EGCG 0.04% were compact and homogeneous, and had better gel formation ability. The lower concentrations of EGCG formed a large number of chemical interactions such as those of disulfide bonds and hydrophobic interactions inside the surimi gels by proper cross-linking with MP, and also increased the ordered ß-sheet structure of MP, which facilitated the formation of the compact three-dimensional network gel.

2.
Animals (Basel) ; 14(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39123688

RESUMEN

We conducted an experiment of planting a dead cow and a metal-framed cage with cameras on the 1629 m deep sea floor off the southeast coast of Hainan Island in the northwestern South China Sea, using ROV diving and setting up a video camera on the cage to observe animals who came to eat the bait. The deep-sea cameras captured footage of eight Pacific sleeper sharks (Somniosus pacificus) swimming and feeding around the dead cow. To our knowledge, this is the first time the occurrence of such a shark species has been reported in the South China Sea. Eight individuals were differentiated based on the characteristic differences displayed in the images, with lengths of 1.9 to 5.1 m estimated. The video camera also recorded the predators' behavior of tearing at the dead cow on the seabed. It was discovered that Pacific sleeper sharks are not strictly solitary and exhibit queue-feeding behavior. This study is significant as it documents a record of a data-scarce shark species, for which little information is available in the literature. It also documents an expansion of the species' known habitat from the north Pacific Ocean into the South China Sea. Such sharks diving into the deep sea to predate on dead animals also suggests that occurrences of large chunks of dead organic bodies falling onto the deep sea might have been more frequent than we previously thought in the South China Sea. The findings have implications for understanding the geographic connectivity of large swimming animals between the South China Sea and the Pacific Ocean and provide scientific evidence for formulating conservation and management strategies for sharks and other large animals in the oceans.

3.
Bioact Mater ; 41: 293-311, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39157692

RESUMEN

Magnesium alloys, noted for their substantial mechanical strength and exceptional biocompatibility, are increasingly being considered for use in biodegradable implants. However, their rapid degradation and significant hydrogen release have limited their applications in orthopaedics. In this study, a novel Mg-RE-Sr alloy was created by friction stir processing to modify its microstructure and enhance its degradation performance. Through microstructural characterization, the friction stir processing effectively refined the grains, accelerated the re-dissolution of precipitates, and ensured a uniform distribution of these phases. The processed alloy demonstrated improved comprehensive properties, with an in vitro corrosion rate of approximately 0.4 mm/y and increases in ultimate tensile strength and elongation by 37 % and 166 %, respectively. Notably, in vivo experiments involving a rat subcutaneous implantation model revealed a slower degradation rate of 0.09 mm/y and a uniform degradation process, basically achieving the requirements for ideal performance in orthopaedic applications. The superior degradation characteristics were attributed to the synergistic effect of attenuated galvanic corrosion and the formation of a dense Y(OH)3/Y2O3 film induced by an exceptional microstructure with a highly solid-soluted matrix and uniformly refined precipitates. Meanwhile, the alloys exhibited excellent biocompatibility and did not cause undesirable inflammation or produce toxic degradation products. These improvements in biocompatibility and degradation characteristics indicate great promise for the use of this friction stir processed alloy in osteosynthesis systems in the clinical setting.

4.
Int J Biol Macromol ; 277(Pt 2): 134009, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39043288

RESUMEN

Antifreeze peptide (AFP) including in frozen protein ink is an inevitable trend because AFP can make protein ink suitable for 3D printing after freezing. AFP-based surimi ink (ASI) was firstly investigated, and the AFP significantly enhanced 3D printability of frozen surimi ink. The rheological and textural results of ASI show that the τ0, K, and n values are 321.14 Pa, 2.2259 × 105 Pa·sn, and 0.19, respectively, and the rupture strength of the 3D structure is up to 217.67 g. Circular dichroism, intermolecular force, and differential scanning calorimeter show ASI has more undenatured protein after freezing when compared that surimi ink (SI), which was denatured, and the α-helix changed to a ß-sheet due to the destruction of hydrogen bonds and the exposure of hydrophobic groups. The water distribution, water holding capacity, and microstructure indicate that ASI effectively binds free water after freezing, while SI has weak water binding capacity and a large amount of free water is formed. ASI is suitable for 3D printing, and can print up to 40.0 mm hollow isolation column and 50.0 mm high Wuba which is not possible with SI. The application of AFP provides guidance for 3D printing frozen protein ink in food industry.


Asunto(s)
Proteínas Anticongelantes , Congelación , Tinta , Impresión Tridimensional , Proteínas Anticongelantes/química , Reología , Agua/química
5.
Chem Sci ; 15(28): 11013-11020, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39027296

RESUMEN

The electrocatalytic methanol oxidation reaction (MOR) is a viable approach for realizing high value-added formate transformation from biomass byproducts. However, usually it is restricted by the excess adsorption of intermediates (COad) and overoxidation of catalysts, which results in low product selectivity and inactivation of the active sites. Herein, a novel Cu-O-Ni electron-transfer channel was constructed by loading NiCuO x on nickel foam (NF) to inhibit the overoxidation of Ni and enhance the formate selectivity of the MOR. The optimized NiCuO x -2/NF demonstrated excellent MOR catalytic performance at industrial current density (E 500 = 1.42 V) and high faradaic efficiency of ∼100%, as well as durable formate generation up to 600 h at ∼500 mA cm-2. The directional electron transfer from Cu to Ni and enhanced lattice stability could alleviate the overoxidation of Ni(iii) active sites to guarantee reversible Ni(ii)/Ni(iii) cycles and endow NiCuO x -2/NF with high stability under increased current density, respectively. An established electrolytic cell created by coupling the MOR with the hydrogen evolution reaction could produce H2 with low electric consumption (230 mV lower voltage at 400 mA cm-2) and concurrently generated the high value-added product of formate at the anode.

6.
Environ Sci Ecotechnol ; 22: 100442, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39044783

RESUMEN

Global temperatures will continue to increase in the future. The ∼640,000-km2 Loess Plateau (LP) is a typical arid and semi-arid region in China. Similar regions cover ∼41% of the Earth, and its soils are some of the most severely eroded anywhere in the world. It is very important to understand the vegetation change and its ecological threshold under climate change on the LP for the sustainable development in the Yellow River Basin. However, little is known about how vegetation on the LP will respond to climate change and what is the sustainable threshold level of vegetation cover on the LP. Here we show that the temperature on the LP has risen 0.27 °C per decade over the past 50 years, a rate that is 30% higher than the average warming rate across China. During historical times, vegetation change was regulated by environmental factors and anthropogenic activities. Vegetation coverage was about 53% on the LP from the Xia Dynasty to the Spring and Autumn and Warring States period. Over the past 70 years, however, the environment has gradually improved and the vegetation cover had increased to ∼65% by 2021. We forecast future changes of vegetation cover on the LP in 2030s, in 2050s and in 2070s using SDM (Species Distribution Model) under Low-emission scenarios, Medium-emission scenarios and High-emission scenarios. An average value of vegetation cover under the three emission scenarios will be 64.67%, 62.70% and 61.47%, respectively. According to the historical record and SDM forecasts, the threshold level of vegetation cover on the LP is estimated to be 53-65%. Currently, vegetation cover on the LP has increased to the upper limit of the threshold value (∼65%). We conclude that the risk of ecosystem collapse on the LP will increase with further temperature increases once the vegetated area and density exceed the threshold value. It is urgent to adopt sustainable strategies such as stopping expanding vegetation area and scientifically optimizing the vegetation structure on the LP to improve the ecological sustainability of the Yellow River Basin.

7.
Sensors (Basel) ; 24(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38931527

RESUMEN

The identification and detection of pesticides is crucial to protecting both the environment and human health. However, it can be challenging to conveniently and rapidly differentiate between different types of pesticides. We developed a supramolecular fluorescent sensor array, in which calixarenes with broad-spectrum encapsulation capacity served as recognition receptors. The sensor array exhibits distinct fluorescence change patterns for seven tested pesticides, encompassing herbicides, insecticides, and fungicides. With a reaction time of just three minutes, the sensor array proves to be a rapid and efficient tool for the discrimination of pesticides. Furthermore, this supramolecular sensing approach can be easily extended to enable real-time and on-site visual detection of varying concentrations of imazalil using a smartphone with a color scanning application. This work not only provides a simple and effective method for pesticide identification and quantification, but also offers a versatile and advantageous platform for the recognition of other analytes in relevant fields.


Asunto(s)
Calixarenos , Plaguicidas , Calixarenos/química , Plaguicidas/análisis , Técnicas Biosensibles/métodos , Teléfono Inteligente , Espectrometría de Fluorescencia/métodos
8.
RSC Adv ; 14(28): 19707-19717, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38903670

RESUMEN

In recent decades, environmental protection and energy issues have gained significant attention, and the development of efficient, environmentally friendly catalysts has become especially crucial for the advancement of photocatalytic technology. This study employs the sintering method to produce biochar. A hybrid photocatalyst for the degradation of RHB under visible light was prepared by loading varying proportions of biochar onto g-C3N4 using ultrasonic technology. Among them, 2% CGCD (2% biochar/g-C3N4) achieved a degradation rate of 91.3% for RHB after 30 minutes of visible light exposure, which was more than 25% higher than GCD (g-C3N4), and exhibited a higher photocurrent intensity and lower impedance value. The enhancement in photocatalytic activity is primarily attributed to the increased utilization efficiency of visible light and the electron transfer channel effect from a minor amount of biochar, effectively reducing the recombination of photo-generated charge carriers on the g-C3N4 surface, thereby significantly improving photocatalytic activity. The degradation of RHB is synergistically mediated by O2 -, h+ (photo-generated holes), and ˙OH. The free radical capture experiment indicates that O2 - and ˙OH are the primary active components, followed by h+.

9.
Nanomaterials (Basel) ; 14(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786809

RESUMEN

The application of electrochemical hydrogen evolution reaction (HER) for renewable energy conversion contributes to the ultimate goal of a zero-carbon emission society. Metal phosphides have been considered as promising HER catalysts in the alkaline environment, which, unfortunately, is still limited owing to the weak adsorption of H* and easy dissolution during operation. Herein, a bimetallic NiCoP-2/NF phosphide is constructed on nickel foam (NF), requiring rather low overpotentials of 150 mV and 169 mV to meet the current densities of 500 and 1000 mA cm-2, respectively, and able to operate stably for 100 h without detectable activity decay. The excellent HER performance is obtained thanks to the synergetic catalytic effect between Ni and Co, among which Ni is introduced to enhance the intrinsic activity and Co increases the electrochemically active area. Meanwhile, the protection of the externally generated amorphous phosphorus oxide layer improves the stability of NiCoP/NF. An electrolyser using NiCoP-2/NF as both cathode and anode catalysts in an alkaline solution can produce hydrogen with low electric consumption (overpotential of 270 mV at 500 mA cm-2).

10.
Compr Rev Food Sci Food Saf ; 23(3): e13349, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38638060

RESUMEN

3D printing is an additive manufacturing technology that locates constructed models with computer-controlled printing equipment. To achieve high-quality printing, the requirements on rheological properties of raw materials are extremely restrictive. Given the special structure and high modifiability under external physicochemical factors, the rheological properties of proteins can be easily adjusted to suitable properties for 3D printing. Although protein has great potential as a printing material, there are many challenges in the actual printing process. This review summarizes the technical considerations for protein-based ink 3D printing. The physicochemical factors used to enhance the printing adaptability of protein inks are discussed. The post-processing methods for improving the quality of 3D structures are described, and the application and problems of fourth dimension (4D) printing are illustrated. The prospects of 3D printing in protein manufacturing are presented to support its application in food and cultured meat. The native structure and physicochemical factors of proteins are closely related to their rheological properties, which directly link with their adaptability for 3D printing. Printing parameters include extrusion pressure, printing speed, printing temperature, nozzle diameter, filling mode, and density, which significantly affect the precision and stability of the 3D structure. Post-processing can improve the stability and quality of 3D structures. 4D design can enrich the sensory quality of the structure. 3D-printed protein products can meet consumer needs for nutritional or cultured meat alternatives.


Asunto(s)
Tinta , Impresión Tridimensional , Alimentos , Carne in Vitro , Sustitutos de la Carne
11.
Sci Transl Med ; 16(734): eade7347, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38354227

RESUMEN

Nonalcoholic fatty liver (NAFL) remains relatively benign, but high-risk to end-stage liver diseases become highly prevalent when it progresses into nonalcoholic steatohepatitis (NASH). Our current understanding of the development of NAFL to NASH remains insufficient. In this study, we revealed MAP kinase (MAPK) activation as the most notable molecular signature associated with NASH progression across multiple species. Furthermore, we identified suppressor of IKKε (SIKE) as a conserved and potent negative controller of MAPK activation. Hepatocyte-specific overexpression of Sike prevented NASH progression in diet- and toxin-induced mouse NASH models. Mechanistically, SIKE directly interacted with TGF-ß-activated kinase 1 (TAK1) and TAK1-binding protein 2 (TAB2) to interrupt their binding and subsequent TAK1-MAPK signaling activation. We found that indobufen markedly up-regulated SIKE expression and effectively improved NASH features in mice and macaques. These findings identify SIKE as a MAPK suppressor that prevents NASH progression and provide proof-of-concept evidence for targeting the SIKE-TAK1 axis as a potential NASH therapy.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transducción de Señal/fisiología , Hepatocitos/metabolismo , Perfilación de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Hígado/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
12.
Kidney Int ; 105(5): 1020-1034, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38387504

RESUMEN

The circadian clock influences a wide range of biological process and controls numerous aspects of physiology to adapt to the daily environmental changes caused by Earth's rotation. The kidney clock plays an important role in maintaining tubular function, but its effect on podocytes remains unclear. Here, we found that podocytes expressed CLOCK proteins, and that 2666 glomerular gene transcripts (13.4%), including autophagy related genes, had 24-hour circadian rhythms. Deletion of Clock in podocytes resulted in 1666 gene transcripts with the loss of circadian rhythm including autophagy genes. Podocyte-specific Clock knockout mice at age three and eight months showed deficient autophagy, loss of podocytes and increased albuminuria. Chromatin immunoprecipitation (ChIP) sequence analysis indicated autophagy related genes were targets of CLOCK in podocytes. ChIP-PCR further confirmed Clock binding to the promoter regions of Becn1 and Atg12, two autophagy related genes. Furthermore, the association of CLOCK regulated autophagy with chronic sleep fragmentation and diabetic kidney disease was analyzed. Chronic sleep fragmentation resulted in the loss of glomerular Clock rhythm, inhibition of podocyte autophagy, and proteinuria. Rhythmic oscillations of Clock also disappeared in high glucose treated podocytes and in glomeruli from diabetic mice. Finally, circadian differences in podocyte autophagy were also abolished in diabetic mice. Deletion Clock in podocytes aggravated podocyte injury and proteinuria in diabetic mice. Thus, our findings demonstrate that clock-dependent regulation of autophagy may be essential for podocyte survival. Hence. loss of circadian controlled autophagy may play an important role in podocyte injury and proteinuria.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Podocitos , Ratones , Animales , Podocitos/metabolismo , Diabetes Mellitus Experimental/complicaciones , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Proteinuria/genética , Proteinuria/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/complicaciones , Ratones Noqueados , Autofagia
13.
J Fish Biol ; 104(5): 1308-1325, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38310927

RESUMEN

We report on the feeding ecology of two species, the short-headed lanternfish Diaphus brachycephalus and Warming's lanternfish Ceratoscopelus warmingii, using data collected over five surveys from 2015 to 2017 in the open South China Sea. D. brachycephalus feed mainly on copepods, with few differences in food composition between different-sized individuals; the diet of C. warmingii is more diverse, including crustacean zooplankton, gelatinous animals, and Mollusca, and differs significantly between fishes >55 mm in body length and smaller fishes. Interspecific competition for food between these two species is not strong, while intraspecific competition may be more intense in D. brachycephalus than in C. warmingii. Trophic levels of D. brachycephalus (3.46) and C. warmingii (3.38) identify both species as third-trophic-level lower carnivores. The diel feeding patterns of D. brachycephalus and C. warmingii differ: the former feeds actively both day and night when food is plentiful, and feeds primarily in the upper layer at night and in the mesopelagic layer during the daytime, and the latter ascends into the upper 100 m at night to feed, but stomach fullness is lower than D. brachycephalus. Dry-body-weight daily ration estimates for D. brachycephalus range from 5.19% to 16.46%, and those for C. warmingii range from 1.38% to 4.39%.


Asunto(s)
Dieta , Conducta Alimentaria , Peces , Animales , Peces/fisiología , Dieta/veterinaria , China , Cadena Alimentaria , Tamaño Corporal
14.
ChemSusChem ; 17(3): e202301265, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37799013

RESUMEN

Metal-organic frameworks-based electrocatalysts have been developed as highly desirable and promising candidates for catalyzing oxygen reduction reaction (ORR), which, however, usually need to be prepared at elevated temperatures and may suffer from the framework collapse in water environments, largely preventing its industrial application. Herein, this work demonstrates a facile low-temperature ion exchange method to synthesize Mn and Fe co-loaded Prussian blue analogues possessing core-shell structured frameworks and favorable water-tolerance. Among the catalysts prepared, the optimal HMPB-2.6Mn shows a high ORR electrocatalytic performance featuring a half-wave potential of 0.86 V and zinc-air battery power density of 119 mW cm-2 , as well as negligible degradation up to 60 h, which are comparable to commercial Pt/C. Such an excellent electrocatalytic performance is attributed to the special core-shell-like structure with Mn concentrated in outer shell, and the synergetic interactions between Mn and Fe, endowing HMPB-Mn with outstanding ORR activity and good stability.

15.
Ren Fail ; 45(2): 2278310, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936488

RESUMEN

OBJECTIVE: This study aimed to analyze the association between sleep quality and cardiovascular disease in patients on maintenance hemodialysis (MHD). METHODS: A total of 601 patients with MHD in the second affiliated hospital of Nanjing Medical University, were prospectively enrolled in this cohort study from January 2019 to December2019. The global Pittsburgh sleep quality index (PSQI) score > 7 indicates that a person with poor sleep quality. Patients were divided into two groups according to the PSQI score. Follow-up was conducted about 3 years with all-cause death and major adverse cardiovascular events (MACEs) as the endpoint events. RESULTS: Of the 601 patients, 595 patients completed the PSQI assessment, with 278 patients having poor sleep quality. Patients in the PSQI > 7 group were older and had a higher proportion of cardiovascular disease or diabetes. Years of education, diastolic blood pressure, and heart rate were lower in the PSQI > 7 group. At a mean follow-up period of 3 years, 116 patients died, 64 patients were lost to follow-up, and 115 patients experienced MACEs. After adjusting for confounding factors such as age, gender, dialysis age, and previous cardiovascular disease, the risk of MACE in patients with poor sleep quality was twice that of patients with good sleep quality (HR = 2.037 (1.339, 3.097), p = 0.001). There was no significant difference in the risk of all-cause death between the two groups. CONCLUSION: The prevalence of poor sleep quality was 46.7% in patients with MHD. Poor sleep quality was an independent risk factor for MACEs in patients with MHD.


Asunto(s)
Enfermedades Cardiovasculares , Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos del Sueño-Vigilia , Humanos , Calidad del Sueño , Estudios de Cohortes , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/complicaciones , Estudios Prospectivos , Diálisis Renal/efectos adversos , Trastornos del Sueño-Vigilia/epidemiología , Trastornos del Sueño-Vigilia/etiología , Sueño/fisiología
16.
Nanomicro Lett ; 15(1): 212, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37707720

RESUMEN

Hydrazine oxidation reaction (HzOR) assisted hydrogen evolution reaction (HER) offers a feasible path for low power consumption to hydrogen production. Unfortunately however, the total electrooxidation of hydrazine in anode and the dissociation kinetics of water in cathode are critically depend on the interaction between the reaction intermediates and surface of catalysts, which are still challenging due to the totally different catalytic mechanisms. Herein, the [W-O] group with strong adsorption capacity is introduced into CoP nanoflakes to fabricate bifunctional catalyst, which possesses excellent catalytic performances towards both HER (185.60 mV at 1000 mA cm-2) and HzOR (78.99 mV at 10,00 mA cm-2) with the overall electrolyzer potential of 1.634 V lower than that of the water splitting system at 100 mA cm-2. The introduction of [W-O] groups, working as the adsorption sites for H2O dissociation and N2H4 dehydrogenation, leads to the formation of porous structure on CoP nanoflakes and regulates the electronic structure of Co through the linked O in [W-O] group as well, resultantly boosting the hydrogen production and HzOR. Moreover, a proof-of-concept direct hydrazine fuel cell-powered H2 production system has been assembled, realizing H2 evolution at a rate of 3.53 mmol cm-2 h-1 at room temperature without external electricity supply.

17.
Small ; 19(42): e2303061, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37340882

RESUMEN

Developing anode catalysts with substantially enhanced activity for hydrogen oxidation reaction (HOR) and CO tolerance performance is of great importance for the commercial applications of proton exchange membrane fuel cells (PEMFCs). Herein, an excellent CO-tolerant catalyst (Pd-WO3 /C) has been fabricated by loading Pd nanoparticles on WO3 via an immersion-reduction route. A remarkably high power density of 1.33 W cm-2 at 80 °C is obtained by using the optimized 3Pd-WO3 /C as the anode catalyst of PEMFCs, and the moderately reduced power density (73% remained) in CO/H2 mixed gas can quickly recover after removal of CO-contamination from hydrogen fuel, which is not possible by using Pt/C or Pd/C as anode catalyst. The prominent HOR activity of 3Pd-WO3 /C is attributed to the optimized interfacial electron interaction, in which the activated H* adsorbed on Pd species can be effectively transferred to WO3 species through hydrogen spillover effect and then oxidized through the H species insert/output effect during the formation of Hx WO3 in acid electrolyte. More importantly, a novel synergetic catalytic mechanism about excellent CO tolerance is proposed, in which Pd and WO3 respectively absorbs/activates CO and H2 O, thus achieving the CO electrooxidation and re-exposure of Pd active sites for CO-tolerant HOR.

18.
Adv Mater ; 35(32): e2304508, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37344386

RESUMEN

Environmentally friendly electrochemical reduction of contaminated nitrate to ammonia (NO3 - RR) is a promising solution for large quantity ammonia (NH3 ) production, which, however, is a complex multi-reaction process involving coordination between different reaction intermediates of nitrate reduction and water decomposition-provided active hydrogen (Hads ) species. Here, a dual-site catalyst of [W-O] group-doped CoP nanosheets (0.6W-O-CoP@NF) has been designed to synergistically catalyze the NO3 - RR and water decomposition, especially the reactions between the intermediates of NO3 - RR and water decomposition-provided Hads species. This catalytic NO3 - RR exhibits an extremely high NH3 yield of 80.92 mg h-1 cm-2 and a Faradaic efficiency (FE) of 95.2% in 1 m KOH containing 0.1 m NO3 - . Significantly, 0.6W-O-CoP@NF presents greatly enhanced NH3 yield and FE in a wide NO3 - concentration ranges of 0.001-0.1 m compared to the reported. The excellent NO3 - RR performance is attributed to a synergistic catalytic effect between [W-O] and CoP active sites, in which the doped [W-O] group promotes the water decomposition to supply abundant Hads , and meanwhile modulates the electronic structure of Co for strengthened adsorption of Hads and the hydrogen (H2 ) release prevention, resultantly facilitating the NO3 - RR. Finally, a Zn-NO3 - battery has been assembled to simultaneously achieve three functions: electricity output, ammonia production, and nitrate treatment in wastewater.

19.
Front Oncol ; 13: 1024908, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37188185

RESUMEN

Thyroid cancer can be divided into two types according to its cellular origin, i.e., malignant tumors originating from thyroid cells and cancers that metastasize to the thyroid from other sites, the latter of which are, clinically rare. This article reports the diagnosis and treatment of a rectal neuroendocrine neoplasm metastasis to the thyroid. No similar cases have been reported before. This case suggests that when evaluating thyroid tumors, clinicians should not only carefully identify the clinical features of the tumor but also pay special attention to the patient's history of tumors, especially neuroendocrine neoplasms. For definite secondary thyroid malignancies, neck surgery is feasible if the thyroid is the only site of metastasis; otherwise, the subsequent diagnosis and treatment plan should be determined after a comprehensive evaluation of the primary tumor and patient's general condition.

20.
Adv Sci (Weinh) ; 10(20): e2206744, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37171793

RESUMEN

The importance of mRNA N6-methyladenosine (m6 A) modification during tumor metastasis is controversial as it plays distinct roles in different biological contexts. Moreover, how cancer cell plasticity is shaped by m6 A modification is interesting but remains uncharacterized. Here, this work shows that m6 A reader insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) is remarkably upregulated in metastatic lung adenocarcinoma (LUAD) and indicates worse prognosis of patients. Interestingly, IGF2BP3 induces partial epithelial-mesenchymal-transition (EMT) and confers LUAD cells plasticity to metastasize through m6 A-dependent overactivation of Notch signaling. Mechanistically, IGF2BP3 recognized m6 A-modified minichromosome maintenance complex component (MCM5) mRNAs to prolong stability of them, subsequently upregulating MCM5 protein, which competitively inhibits SIRT1-mediated deacetylation of Notch1 intracellular domain (NICD1), stabilizes NICD1 protein and contributes to m6 A-dependent IGF2BP3-mediated cellular plasticity. Notably, a tight correlation of the IGF2BP3/MCM5/Notch axis is evidenced in clinical LUAD specimens. Therefore, this study elucidates a critical role of m6 A modification on LUAD cell plasticity in fostering tumor metastasis via the above axis, providing potential targets for metastatic LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Adenosina , Proteínas de Ciclo Celular , Neoplasias Pulmonares/genética , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...