Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Anal Bioanal Chem ; 416(3): 635-650, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37736840

RESUMEN

Human biomonitoring can add value to chemical risk assessment by reducing the assumptions regarding consumption rates, residue occurrence, and processing effects and by integrating exposures from different sources (diet, household use, environmental). However, the relationship between exposure and concentration in human matrices is unknown for most pesticides. Therefore, we conducted a pilot study to gain more insight into the qualitative and quantitative relationship between dietary intake of pesticides (external exposure) and urinary excretion (reflecting internal exposure). In this cross-sectional observational study, 35 healthy consumers aged 18-65 years from the region of Wageningen, Netherlands, collected an exact duplicate portion of their diets during 24 h. On the same day, they also collected all their urine. The duplicate diets were analyzed using target screening by GC- and LC-HRMS; each duplicate diet contained at least five, up to 21, pesticide residues. The 24 h urine samples were analyzed using LC-HRMS in a suspect screening workflow. Metabolites were tentatively detected in all 24 h urine samples, ranging from six metabolites corresponding to four pesticides up to 40 metabolites originating from 16 pesticides in a single urine sample. In total, 65 metabolites originating from 28 pesticides were tentatively detected. After prioritization and additional confirmation experiments, 28 metabolites originating from 10 pesticides were identified with confidence level 1 or 2b. Next, quantitative analysis was performed for a selection of pesticides in duplicate diets and their metabolites in 24 h urine to assess quantitative relationships. In the quantitative comparisons between duplicate diet and 24 h urine, it was found that some metabolites were already present in the duplicate diet, which may give an overestimation of exposure to the parent pesticide based on measurement of the metabolites in urine. Additionally, the quantitative comparisons suggest a background exposure through other exposure routes. We conclude that suspect screening of 24 h urine samples can disclose exposure to mixtures of pesticide on the same day in the general population. However, more research is needed to obtain quantitative relationships between dietary intake and exposure.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Humanos , Plaguicidas/análisis , Proyectos Piloto , Estudios Transversales , Dieta , Residuos de Plaguicidas/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
2.
Anal Chim Acta ; 983: 76-90, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28811031

RESUMEN

A novel probabilistic Bayesian strategy is proposed to resolve highly coeluting peaks in high-resolution GC-MS (Orbitrap) data. Opposed to a deterministic approach, we propose to solve the problem probabilistically, using a complete pipeline. First, the retention time(s) for a (probabilistic) number of compounds for each mass channel are estimated. The statistical dependency between m/z channels was implied by including penalties in the model objective function. Second, Bayesian Information Criterion (BIC) is used as Occam's razor for the probabilistic assessment of the number of components. Third, a probabilistic set of resolved spectra, and their associated retention times are estimated. Finally, a probabilistic library search is proposed, computing the spectral match with a high resolution library. More specifically, a correlative measure was used that included the uncertainties in the least square fitting, as well as the probability for different proposals for the number of compounds in the mixture. The method was tested on simulated high resolution data, as well as on a set of pesticides injected in a GC-Orbitrap with high coelution. The proposed pipeline was able to detect accurately the retention times and the spectra of the peaks. For our case, with extremely high coelution situation, 5 out of the 7 existing compounds under the selected region of interest, were correctly assessed. Finally, the comparison with the classical methods of deconvolution (i.e., MCR and AMDIS) indicates a better performance of the proposed algorithm in terms of the number of correctly resolved compounds.

3.
J Chromatogr A ; 1422: 289-298, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26601712

RESUMEN

Significant speed improvement for instrumental runtime would make GC­MS much more attractive for determination of pesticides and contaminants and as complementary technique to LC­MS. This was the trigger to develop a fast method (time between injections less than 10 min) for the determination of pesticides and PCBs that are not (or less) amenable to LC­MS. A key factor in achieving shorter analysis time was the use of split injection (1:10) which allowed the use of a much higher initial GC oven temperature. A shorter column (15 m), higher temperature ramp, and higher carrier gas flow rate (6 mL/min) further contributed to analysis-time reduction. Chromatographic resolution was slightly compromised but still well fit-for-purpose. Due to the high sensitivity of the technique used (GC­APCI-triple quadrupole MS/MS), quantification and identification were still possible down to the 10 µg/kg level, which was demonstrated by successful validation of the method for complex feed matrices according to EU guidelines. Other advantages of the method included a better compatibility of acetonitrile extracts (e.g. QuEChERS) with GC, and a reduced transfer of co-extractants into the GC column and mass spectrometer.


Asunto(s)
Alimentación Animal/análisis , Técnicas de Química Analítica/métodos , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas en Tándem , Animales , Presión Atmosférica , Plaguicidas/análisis
4.
J Chromatogr A ; 1062(2): 227-38, 2005 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-15679160

RESUMEN

Direct analysis of polymers containing polymeric hindered amine light stabilizers (HALS) by using pyrolysis coupled to GC-MS is applied successfully for fast and straightforward identification of these HALS additives. Each of the HALS additives shows different pyrolysis gas chromatograms containing characteristic pyrolysis products. As a result, HALS additives with very similar chemical structures, e.g. Chimassorb 944 and Chimassorb 2020, can be distinguished. A HPLC method with both ultraviolet (UV) and evaporative light scattering detection (ELSD) is developed to quantify the various HALS additives in extracts of polymers. The critical factor of the HPLC method is the use of a basic amine, like n-hexylamine, as a solvent additive to facilitate the elution of HALS additives. The various HALS additives can be distinguished according to retention time and peak shape and by using different detection methods. The suitability of the developed methods is demonstrated by the analytical performance of the HPLC method and the identification and determination of the actual content of HALS additives in polyolefines using pyrolysis GC-MS and HPLC. The HPLC method can also be used for the determination of the specific migration of HALS additives from food contact materials.


Asunto(s)
Aminas/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Polímeros/química , Espectrofotometría Ultravioleta/métodos , Luz , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...