Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35763484

RESUMEN

Graph drawing techniques have been developed in the last few years with the purpose of producing esthetically pleasing node-link layouts. Recently, the employment of differentiable loss functions has paved the road to the massive usage of gradient descent and related optimization algorithms. In this article, we propose a novel framework for the development of Graph Neural Drawers (GNDs), machines that rely on neural computation for constructing efficient and complex maps. GND is Graph Neural Networks (GNNs) whose learning process can be driven by any provided loss function, such as the ones commonly employed in Graph Drawing. Moreover, we prove that this mechanism can be guided by loss functions computed by means of feedforward neural networks, on the basis of supervision hints that express beauty properties, like the minimization of crossing edges. In this context, we show that GNNs can nicely be enriched by positional features to deal also with unlabeled vertexes. We provide a proof-of-concept by constructing a loss function for the edge crossing and provide quantitative and qualitative comparisons among different GNN models working under the proposed framework.

2.
IEEE Trans Pattern Anal Mach Intell ; 44(2): 727-739, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33856980

RESUMEN

The popularity of deep learning techniques renewed the interest in neural architectures able to process complex structures that can be represented using graphs, inspired by Graph Neural Networks (GNNs). We focus our attention on the originally proposed GNN model of Scarselli et al. 2009, which encodes the state of the nodes of the graph by means of an iterative diffusion procedure that, during the learning stage, must be computed at every epoch, until the fixed point of a learnable state transition function is reached, propagating the information among the neighbouring nodes. We propose a novel approach to learning in GNNs, based on constrained optimization in the Lagrangian framework. Learning both the transition function and the node states is the outcome of a joint process, in which the state convergence procedure is implicitly expressed by a constraint satisfaction mechanism, avoiding iterative epoch-wise procedures and the network unfolding. Our computational structure searches for saddle points of the Lagrangian in the adjoint space composed of weights, nodes state variables and Lagrange multipliers. This process is further enhanced by multiple layers of constraints that accelerate the diffusion process. An experimental analysis shows that the proposed approach compares favourably with popular models on several benchmarks.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Atención
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA