Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 13(20): 9280-9292, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-33982741

RESUMEN

Diamond nanoparticles (nanodiamonds) can transport active drugs in cultured cells as well as in vivo. However, in the latter case, methods allowing the determination of their bioavailability accurately are still lacking. A nanodiamond can be made fluorescent with a perfectly stable emission and a lifetime ten times longer than that of tissue autofluorescence. Taking advantage of these properties, we present an automated quantification method of fluorescent nanodiamonds (FND) in histological sections of mouse organs and tumors, after systemic injection. We use a home-made time-delayed fluorescence microscope comprising a custom pulsed laser source synchronized on the master clock of a gated intensified array detector. This setup allows ultra-high-resolution images (120 Mpixels in size) of whole mouse organ sections to be obtained, with subcellular resolution and single-particle sensitivity. As a proof-of-principle experiment, we quantified the biodistribution and aggregation state of new cationic FNDs capable of transporting small interfering RNA inhibiting the oncogene responsible for Ewing sarcoma. Image analysis showed a low yield of nanodiamonds in the tumor after intravenous injection. Thus, for the in vivo efficacy assay, we injected the nanomedicine into the tumor. We achieved a 28-fold inhibition of the oncogene. This method can readily be applied to other nanoemitters with ≈100 ns lifetime.


Asunto(s)
Nanodiamantes , Neoplasias , Animales , Fluorescencia , Ratones , ARN Interferente Pequeño , Distribución Tisular
2.
Front Oncol ; 5: 82, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25905041

RESUMEN

Cell death can occur through different mechanisms, defined by their nature and physiological implications. Correct assessment of cell death is crucial for cancer therapy success. Sarcomas are a large and diverse group of neoplasias from mesenchymal origin. Among cell death types, apoptosis is by far the most studied in sarcomas. Albeit very promising in other fields, regulated necrosis and other cell death circumstances (as so-called "autophagic cell death" or "mitotic catastrophe") have not been yet properly addressed in sarcomas. Cell death is usually quantified in sarcomas by unspecific assays and in most cases the precise sequence of events remains poorly characterized. In this review, our main objective is to put into context the most recent sarcoma cell death findings in the more general landscape of different cell death modalities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA