Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39021126

RESUMEN

Abstract: Disease surveillance data was critical in supporting public health decisions throughout the coronavirus disease 2019 (COVID-19) pandemic. At the same time, the unprecedented circumstances of the pandemic revealed many shortcomings of surveillance systems for viral respiratory pathogens. Strengthening of surveillance systems was identified as a priority for the recently established Australian Centre for Disease Control, which represents a critical opportunity to review pre-pandemic and pandemic surveillance practices, and to decide on future priorities, during both pandemic and inter-pandemic periods. On 20 October 2022, we ran a workshop with experts from the academic and government sectors who had contributed to the COVID-19 response in Australia on 'The role of surveillance in epidemic response', at the University of New South Wales, Sydney, Australia. Following the workshop, we developed five recommendations to strengthen respiratory virus surveillance systems in Australia, which we present here. Our recommendations are not intended to be exhaustive. We instead chose to focus on data types that are highly valuable yet typically overlooked by surveillance planners. Three of the recommendations focus on data collection activities that support the monitoring and prediction of disease impact and the effectiveness of interventions (what to measure) and two focus on surveillance methods and capabilities (how to measure). Implementation of our recommendations would enable more robust, timely, and impactful epidemic analysis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Australia/epidemiología , Pandemias , Vigilancia de la Población , Monitoreo Epidemiológico , Salud Pública , Vigilancia en Salud Pública
2.
PLoS Negl Trop Dis ; 18(1): e0011570, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38252650

RESUMEN

BACKGROUND: Plasmodium knowlesi is a zoonotic parasite that causes malaria in humans. The pathogen has a natural host reservoir in certain macaque species and is transmitted to humans via mosquitoes of the Anopheles Leucosphyrus Group. The risk of human P. knowlesi infection varies across Southeast Asia and is dependent upon environmental factors. Understanding this geographic variation in risk is important both for enabling appropriate diagnosis and treatment of the disease and for improving the planning and evaluation of malaria elimination. However, the data available on P. knowlesi occurrence are biased towards regions with greater surveillance and sampling effort. Predicting the spatial variation in risk of P. knowlesi malaria requires methods that can both incorporate environmental risk factors and account for spatial bias in detection. METHODS & RESULTS: We extend and apply an environmental niche modelling framework as implemented by a previous mapping study of P. knowlesi transmission risk which included data up to 2015. We reviewed the literature from October 2015 through to March 2020 and identified 264 new records of P. knowlesi, with a total of 524 occurrences included in the current study following consolidation with the 2015 study. The modelling framework used in the 2015 study was extended, with changes including the addition of new covariates to capture the effect of deforestation and urbanisation on P. knowlesi transmission. DISCUSSION: Our map of P. knowlesi relative transmission suitability estimates that the risk posed by the pathogen is highest in Malaysia and Indonesia, with localised areas of high risk also predicted in the Greater Mekong Subregion, The Philippines and Northeast India. These results highlight areas of priority for P. knowlesi surveillance and prospective sampling to address the challenge the disease poses to malaria elimination planning.


Asunto(s)
Anopheles , Malaria , Plasmodium knowlesi , Animales , Humanos , Estudios Prospectivos , Asia Sudoriental/epidemiología , Malaria/parasitología , Malasia/epidemiología , Macaca/parasitología , Anopheles/parasitología
3.
R Soc Open Sci ; 11(1): 230641, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38204787

RESUMEN

Disease surveillance aims to collect data at different times or locations, to assist public health authorities to respond appropriately. Surveillance of the simian malaria parasite, Plasmodium knowlesi, is sparse in some endemic areas and the spatial extent of transmission is uncertain. Zoonotic transmission of Plasmodium knowlesi has been demonstrated throughout Southeast Asia and represents a major hurdle to regional malaria elimination efforts. Given an arbitrary spatial prediction of relative disease risk, we develop a flexible framework for surveillance site selection, drawing on principles from multi-criteria decision-making. To demonstrate the utility of our framework, we apply it to the case study of Plasmodium knowlesi malaria surveillance site selection in western Indonesia. We demonstrate how statistical predictions of relative disease risk can be quantitatively incorporated into public health decision-making, with specific application to active human surveillance of zoonotic malaria. This approach can be used in other contexts to extend the utility of modelling outputs.

4.
Vaccine ; 41(45): 6630-6636, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37793975

RESUMEN

The ability for vaccines to protect against infectious diseases varies among individuals, but computational models employed to inform policy typically do not account for this variation. Here we examine this issue: we implement a model of vaccine efficacy developed in the context of SARS-CoV-2 in order to evaluate the general implications of modelling correlates of protection on the individual level. Due to high levels of variation in immune response, the distributions of individual-level protection emerging from this model tend to be highly dispersed, and are often bimodal. We describe the specification of the model, provide an intuitive parameterisation, and comment on its general robustness. We show that the model can be viewed as an intermediate between the typical approaches that consider the mode of vaccine action to be either "all-or-nothing" or "leaky". Our view based on this analysis is that individual variation in correlates of protection is an important consideration that may be crucial to designing and implementing models for estimating population-level impacts of vaccination programs.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Vacunas , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Inmunidad
5.
medRxiv ; 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37609228

RESUMEN

Background: Plasmodium knowlesi is a zoonotic parasite that causes malaria in humans. The pathogen has a natural host reservoir in certain macaque species and is transmitted to humans via mosquitoes of the Anopheles Leucosphyrus Group. The risk of human P. knowlesi infection varies across Southeast Asia and is dependent upon environmental factors. Understanding this geographic variation in risk is important both for enabling appropriate diagnosis and treatment of the disease and for improving the planning and evaluation of malaria elimination. However, the data available on P. knowlesi occurrence are biased towards regions with greater surveillance and sampling effort. Predicting the spatial variation in risk of P. knowlesi malaria requires methods that can both incorporate environmental risk factors and account for spatial bias in detection. Methods & Results: We extend and apply an environmental niche modelling framework as implemented by a previous mapping study of P. knowlesi transmission risk which included data up to 2015. We reviewed the literature from October 2015 through to March 2020 and identified 264 new records of P. knowlesi, with a total of 524 occurrences included in the current study following consolidation with the 2015 study. The modelling framework used in the 2015 study was extended, with changes including the addition of new covariates to capture the effect of deforestation and urbanisation on P. knowlesi transmission. Discussion: Our map of P. knowlesi relative transmission suitability estimates that the risk posed by the pathogen is highest in Malaysia and Indonesia, with localised areas of high risk also predicted in the Greater Mekong Subregion, The Philippines and Northeast India. These results highlight areas of priority for P. knowlesi surveillance and prospective sampling to address the challenge the disease poses to malaria elimination planning.

6.
BMC Infect Dis ; 23(1): 28, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650474

RESUMEN

BACKGROUND: The distribution of the duration that clinical cases of COVID-19 occupy hospital beds (the 'length of stay') is a key factor in determining how incident caseloads translate into health system burden. Robust estimation of length of stay in real-time requires the use of survival methods that can account for right-censoring induced by yet unobserved events in patient progression (e.g. discharge, death). In this study, we estimate in real-time the length of stay distributions of hospitalised COVID-19 cases in New South Wales, Australia, comparing estimates between a period where Delta was the dominant variant and a subsequent period where Omicron was dominant. METHODS: Using data on the hospital stays of 19,574 individuals who tested positive to COVID-19 prior to admission, we performed a competing-risk survival analysis of COVID-19 clinical progression. RESULTS: During the mixed Omicron-Delta epidemic, we found that the mean length of stay for individuals who were discharged directly from ward without an ICU stay was, for age groups 0-39, 40-69 and 70 +, respectively, 2.16 (95% CI: 2.12-2.21), 3.93 (95% CI: 3.78-4.07) and 7.61 days (95% CI: 7.31-8.01), compared to 3.60 (95% CI: 3.48-3.81), 5.78 (95% CI: 5.59-5.99) and 12.31 days (95% CI: 11.75-12.95) across the preceding Delta epidemic (1 July 2021-15 December 2021). We also considered data on the stays of individuals within the Hunter New England Local Health District, where it was reported that Omicron was the only circulating variant, and found mean ward-to-discharge length of stays of 2.05 (95% CI: 1.80-2.30), 2.92 (95% CI: 2.50-3.67) and 6.02 days (95% CI: 4.91-7.01) for the same age groups. CONCLUSIONS: Hospital length of stay was substantially reduced across all clinical pathways during a mixed Omicron-Delta epidemic compared to a prior Delta epidemic, contributing to a lessened health system burden despite a greatly increased infection burden. Our results demonstrate the utility of survival analysis in producing real-time estimates of hospital length of stay for assisting in situational assessment and planning of the COVID-19 response.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Nueva Gales del Sur/epidemiología , COVID-19/epidemiología , Australia , Hospitales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...