Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1415893, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015740

RESUMEN

Introduction: Campylobacter spp. are a public health concern, yet there is still no effective vaccine or medicine available. Methods: Here, we developed a Campylobacter jejuni-specific antibody and found that it targeted a menaquinol cytochrome c reductase complex QcrC. Results: The antibody was specifically reactive to multiple C. jejuni strains including clinical isolates from patients with acute enteritis and was found to inhibit the energy metabolism and growth of C. jejuni. Different culture conditions produced different expression levels of QcrC in C. jejuni, and these levels were closely related not only to the energy metabolism of C. jejuni but also its pathogenicity. Furthermore, immunization of mice with recombinant QcrC induced protective immunity against C. jejuni infection. Discussion: Taken together, our present findings highlight a possible antibody- or vaccination-based strategy to prevent or control Campylobacter infection by targeting the QcrC-mediated metabolic pathway.

2.
Front Biosci (Landmark Ed) ; 28(1): 15, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36722281

RESUMEN

BACKGROUND: Clostridium perfringens and Shiga toxin (Stx)-producing Escherichia coli (STEC) are common causes of food poisoning. We previously demonstrated the efficacy of Stx2B-C-CPE, a fusion protein of the C-terminal region of C. perfringens enterotoxin (C-CPE) and Shiga toxin 2 B subunit (Stx2B), as a bivalent vaccine against C. perfringens and STEC infections. METHODS: Here, we applied an E. coli expression system and Triton X-114 phase separation to prepare tag- and endotoxin-free Stx2B-C-CPE for use in vaccine formulations. RESULTS: As we anticipated, endotoxin removal from the purified antigen reduced both Stx2B- and C-CPE-specific IgG antibody responses in subcutaneously immunized mice, suggesting that endotoxin contamination influences the immunological assessment of Stx2B-C-CPE. However, the combined use of aluminum and Alcaligenes lipid A adjuvants improved IgG antibody responses to the injected antigen, thus indicating the suitability of purified Stx2B-C-CPE for vaccine formulation. CONCLUSIONS: Our current findings provide important knowledge regarding the design of an effective commercial Stx2B-C-CPE vaccine.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Vacunas , Animales , Ratones , Clostridium perfringens , Escherichia coli , Adyuvantes Inmunológicos , Enfermedades Transmitidas por los Alimentos/prevención & control , Enterotoxinas , Inmunoglobulina G
3.
Nat Commun ; 13(1): 4477, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982037

RESUMEN

The gut microbiome is an important determinant in various diseases. Here we perform a cross-sectional study of Japanese adults and identify the Blautia genus, especially B. wexlerae, as a commensal bacterium that is inversely correlated with obesity and type 2 diabetes mellitus. Oral administration of B. wexlerae to mice induce metabolic changes and anti-inflammatory effects that decrease both high-fat diet-induced obesity and diabetes. The beneficial effects of B. wexlerae are correlated with unique amino-acid metabolism to produce S-adenosylmethionine, acetylcholine, and L-ornithine and carbohydrate metabolism resulting in the accumulation of amylopectin and production of succinate, lactate, and acetate, with simultaneous modification of the gut bacterial composition. These findings reveal unique regulatory pathways of host and microbial metabolism that may provide novel strategies in preventive and therapeutic approaches for metabolic disorders.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Clostridiales , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Obesidad , Acetilcolina , Administración Oral , Adulto , Amilopectina , Animales , Clostridiales/metabolismo , Estudios Transversales , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/terapia , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/fisiología , Humanos , Japón , Ratones , Ratones Endogámicos C57BL , Obesidad/microbiología , Obesidad/terapia , Ornitina , Simbiosis
4.
Front Microbiol ; 11: 561005, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101234

RESUMEN

Lymphoid-tissue-resident commensal bacteria (LRCs), including Alcaligenes faecalis, are present in intestinal lymphoid tissue including the Peyer's patches (PPs) of mammals and modulate the host immune system. Although LRCs can colonize within dendritic cells (DCs), the mechanisms through which LRCs persist in DCs and the symbiotic relationships between LRCs and DCs remain to be investigated. Here, we show an intracellular symbiotic system in which the LRC Alcaligenes creates a unique energy shift in DCs. Whereas DCs showed low mitochondrial respiration when they were co-cultured with Escherichia coli, DCs carrying A. faecalis maintained increased mitochondrial respiration. Furthermore, E. coli induced apoptosis of DCs but A. faecalis did not. Regarding an underlying mechanism, A. faecalis-unlike E. coli-did not induce intracellular nitric oxide (NO) production in DCs due to the low activity of its lipopolysaccharide (LPS). Therefore, A. faecalis, an example of LRCs, may persist within intestinal lymphoid tissue because they elicit little NO production in DCs. In addition, the symbiotic DCs exhibit characteristic physiologic changes, including a low rate of apoptosis and increased mitochondrial respiration.

5.
Int Immunol ; 31(2): 91-100, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30329068

RESUMEN

Food poisonings caused by Clostridium perfringens and Shiga toxin (Stx)-producing Escherichia coli (STEC) occur frequently worldwide; however, no vaccine is currently available. Therefore, we aimed to develop a bivalent vaccine against C. perfringens and STEC infections. Although it has been considered that the C-terminal region of C. perfringens enterotoxin (C-CPE) could be a good vaccine antigen to block the binding to its receptor, it was insufficient for induction of a protective immune response because of the low antigenicity. However, the fusion of C-CPE with Stx2 B subunit (Stx2B) augmented the antigenicity of C-CPE without affecting the antigenicity of Stx2B. Indeed, high levels of C-CPE-specific neutralizing IgG were found in the serum of mice immunized with the fusion protein Stx2B-C-CPE. Additionally, comparable and substantial levels of Stx2B-specific neutralizing IgG were induced in mice receiving Stx2B-C-CPE or Stx2B alone. These antibody responses against C-CPE and Stx2B lasted for at least 48 weeks, which were sufficient for protective immunity in vitro and in vivo, indicating that Stx2B-C-CPE could induce long-term protective immunity. As an underlying mechanism, ex vivo stimulation with Stx2B, but not with C-CPE, induced cytokine production from splenic T cells collected from mice immunized with Stx2B-C-CPE, suggesting that Stx2B-specific, but not C-CPE-specific, T cells were induced by the immunization with Stx2B-C-CPE and plausibly promoted immunoglobulin class switching of both Stx2B- and C-CPE-specific B cells from IgM to IgG. These findings collectively indicate that Stx2B-C-CPE is a T-cell-antigen-supplement-type bivalent vaccine, which could be an efficient against C. perfringens and STEC infections.


Asunto(s)
Clostridium perfringens/inmunología , Enterotoxinas/inmunología , Escherichia coli/inmunología , Enfermedades Transmitidas por los Alimentos/inmunología , Inmunogenicidad Vacunal/inmunología , Toxina Shiga II/inmunología , Vacunas/inmunología , Animales , Femenino , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...