Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Brain ; 145(10): 3383-3390, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-35737950

RESUMEN

The endocannabinoid system is a highly conserved and ubiquitous signalling pathway with broad-ranging effects. Despite critical pathway functions, gene variants have not previously been conclusively linked to human disease. We identified nine children from eight families with heterozygous, de novo truncating variants in the last exon of DAGLA with a neuro-ocular phenotype characterized by developmental delay, ataxia and complex oculomotor abnormality. All children displayed paroxysms of nystagmus or eye deviation accompanied by compensatory head posture and worsened incoordination most frequently after waking. RNA sequencing showed clear expression of the truncated transcript and no differences were found between mutant and wild-type DAGLA activity. Immunofluorescence staining of patient-derived fibroblasts and HEK cells expressing the mutant protein showed distinct perinuclear aggregation not detected in control samples. This report establishes truncating variants in the last DAGLA exon as the cause of a unique paediatric syndrome. Because enzymatic activity was preserved, the observed mislocalization of the truncated protein may account for the observed phenotype. Potential mechanisms include DAGLA haploinsufficiency at the plasma membrane or dominant negative effect. To our knowledge, this is the first report directly linking an endocannabinoid system component with human genetic disease and sets the stage for potential future therapeutic avenues.


Asunto(s)
Endocannabinoides , Enfermedades del Sistema Nervioso , Humanos , Niño , Fenotipo , Enfermedades del Sistema Nervioso/genética , Heterocigoto , Síndrome , Proteínas Mutantes
2.
Cell ; 184(19): 4939-4952.e15, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34508652

RESUMEN

The emergence of the COVID-19 epidemic in the United States (U.S.) went largely undetected due to inadequate testing. New Orleans experienced one of the earliest and fastest accelerating outbreaks, coinciding with Mardi Gras. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large-scale events accelerate transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana had limited diversity compared to other U.S. states and that one introduction of SARS-CoV-2 led to almost all of the early transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras, and the festival dramatically accelerated transmission. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate epidemics.


Asunto(s)
COVID-19/epidemiología , Epidemias , SARS-CoV-2/fisiología , COVID-19/transmisión , Bases de Datos como Asunto , Brotes de Enfermedades , Humanos , Louisiana/epidemiología , Filogenia , Factores de Riesgo , SARS-CoV-2/clasificación , Texas , Viaje , Estados Unidos/epidemiología
3.
medRxiv ; 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33564781

RESUMEN

The emergence of the early COVID-19 epidemic in the United States (U.S.) went largely undetected, due to a lack of adequate testing and mitigation efforts. The city of New Orleans, Louisiana experienced one of the earliest and fastest accelerating outbreaks, coinciding with the annual Mardi Gras festival, which went ahead without precautions. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large, crowded events may have accelerated early transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana initially had limited sequence diversity compared to other U.S. states, and that one successful introduction of SARS-CoV-2 led to almost all of the early SARS-CoV-2 transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras and that the festival dramatically accelerated transmission, eventually leading to secondary localized COVID-19 epidemics throughout the Southern U.S.. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate COVID-19 epidemics on a local and regional scale.

4.
Genome Med ; 11(1): 83, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31847883

RESUMEN

BACKGROUND: Whole-exome sequencing (WES) has become an efficient diagnostic test for patients with likely monogenic conditions such as rare idiopathic diseases or sudden unexplained death. Yet, many cases remain undiagnosed. Here, we report the added diagnostic yield achieved for 101 WES cases re-analyzed 1 to 7 years after initial analysis. METHODS: Of the 101 WES cases, 51 were rare idiopathic disease cases and 50 were postmortem "molecular autopsy" cases of early sudden unexplained death. Variants considered for reporting were prioritized and classified into three groups: (1) diagnostic variants, pathogenic and likely pathogenic variants in genes known to cause the phenotype of interest; (2) possibly diagnostic variants, possibly pathogenic variants in genes known to cause the phenotype of interest or pathogenic variants in genes possibly causing the phenotype of interest; and (3) variants of uncertain diagnostic significance, potentially deleterious variants in genes possibly causing the phenotype of interest. RESULTS: Initial analysis revealed diagnostic variants in 13 rare disease cases (25.4%) and 5 sudden death cases (10%). Re-analysis resulted in the identification of additional diagnostic variants in 3 rare disease cases (5.9%) and 1 sudden unexplained death case (2%), which increased our molecular diagnostic yield to 31.4% and 12%, respectively. CONCLUSIONS: The basis of new findings ranged from improvement in variant classification tools, updated genetic databases, and updated clinical phenotypes. Our findings highlight the potential for re-analysis to reveal diagnostic variants in cases that remain undiagnosed after initial WES.


Asunto(s)
Muerte Súbita , Secuenciación del Exoma , Exoma/genética , Enfermedades Raras/diagnóstico , Adenosina Desaminasa/genética , Niño , Preescolar , Bases de Datos Genéticas , Femenino , Variación Genética , Humanos , Masculino , Cadenas Ligeras de Miosina/genética , Nucleotidasas/genética , Fenotipo , Enfermedades Raras/genética , Enfermedades Raras/patología , Ubiquitina-Proteína Ligasas/genética , Adulto Joven
5.
Hum Mol Genet ; 27(23): 4135-4144, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30452684

RESUMEN

Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly specific subset of client proteins. The mitochondrial carrier translocase (TIM22 complex) inserts multispanning proteins, such as mitochondrial metabolite carriers and translocase subunits (TIM23, TIM17A/B and TIM22), into the inner mitochondrial membrane. Both types of substrates are essential for mitochondrial metabolic function and biogenesis. Here, we report on a subject, diagnosed at 1.5 years, with a neuromuscular presentation, comprising hypotonia, gastroesophageal reflux disease and persistently elevated serum and Cerebrospinal fluid lactate (CSF). Patient fibroblasts displayed reduced oxidative capacity and altered mitochondrial morphology. Using trans-mitochondrial cybrid cell lines, we excluded a candidate variant in mitochondrial DNA as causative of these effects. Whole-exome sequencing identified compound heterozygous variants in the TIM22 gene (NM_013337), resulting in premature truncation in one allele (p.Tyr25Ter) and a point mutation in a conserved residue (p.Val33Leu), within the intermembrane space region, of the TIM22 protein in the second allele. Although mRNA transcripts of TIM22 were elevated, biochemical analyses revealed lower levels of TIM22 protein and an even greater deficiency of TIM22 complex formation. In agreement with a defect in carrier translocase function, carrier protein amounts in the inner membrane were found to be reduced. This is the first report of pathogenic variants in the TIM22 pore-forming subunit of the carrier translocase affecting the biogenesis of inner mitochondrial membrane proteins critical for metabolite exchange.


Asunto(s)
Proteínas Portadoras/genética , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Miopatías Mitocondriales/genética , Niño , ADN Mitocondrial/genética , Femenino , Fibroblastos/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Ácido Láctico/líquido cefalorraquídeo , Proteínas de Transporte de Membrana/genética , Mitocondrias/patología , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Miopatías Mitocondriales/líquido cefalorraquídeo , Miopatías Mitocondriales/patología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Secuenciación del Exoma
6.
Front Cardiovasc Med ; 4: 72, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29181379

RESUMEN

The Scripps molecular autopsy study seeks to incorporate genetic testing into the postmortem examination of cases of sudden death in the young (<45 years old). Here, we describe the results from the first 2 years of the study, which consisted of whole exome sequencing (WES) of a cohort of 50 cases predominantly from San Diego County. Apart from the individual description of cases, we analyzed the data at the cohort-level, which brought new perspectives on the genetic causes of sudden death. We investigated the advantages and disadvantages of using WES compared to a gene panel for cardiac disease (usually the first genetic test used by medical examiners). In an attempt to connect complex clinical phenotypes with genotypes, we classified samples by their genetic fingerprint. Finally, we studied the benefits of analyzing the mitochondrial DNA genome. In this regard, we found that half of the cases clinically diagnosed as sudden infant death syndrome had an increased ratio of heteroplasmic variants, and that the variants were also present in the mothers. We believe that community-based data aggregation and sharing will eventually lead to an improved classification of variants. Allele frequencies for the all cases can be accessed via our genomics browser at https://genomics.scripps.edu/browser.

7.
Genet Med ; 19(10): 1179-1183, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28383544

RESUMEN

PURPOSE: Nail-Patella syndrome is a dominantly inherited genetic disorder characterized by abnormalities of the nails, knees, elbows, and pelvis. Nail abnormalities are the most constant feature of Nail-Patella syndrome. Pathogenic mutations in a single gene, LMX1B, a mesenchymal determinant of dorsal-ventral patterning, explain approximately 95% of Nail-Patella syndrome cases. However, 5% of cases remain unexplained. METHODS: Here, we present exome sequencing and analysis of four generations of a family with a dominantly inherited Nail-Patella-like disorder (nail dysplasia with some features of Nail-Patella syndrome) who tested negative for LMX1B mutation. RESULTS: We identify a loss-of-function mutation in WIF1 (NM_007191 p.W15*), which is involved in mesoderm segmentation, as the suspected cause of the Nail-Patella-like disorder observed in this family. CONCLUSIONS: Mutation of WIF1 is a potential novel cause of a Nail-Patella-like disorder. Testing of additional patients negative for LMX1B mutation is needed to confirm this finding and further clarify the phenotype.Genet Med advance online publication 06 April 2017.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Síndrome de la Uña-Rótula/genética , Proteínas Represoras/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adolescente , Adulto , Anciano , Femenino , Humanos , Riñón/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Masculino , Mutación , Síndrome de la Uña-Rótula/metabolismo , Rótula , Linaje , Fenotipo , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Per Med ; 14(1): 17-25, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-29749824

RESUMEN

This study assessed perspectives on whole-genome sequencing (WGS) for rare disease diagnosis and the process of receiving genetic results. Semistructured interviews were conducted with adult patients and parents of minor patients affected by idiopathic diseases (n = 10 cases). Three main themes were identified through qualitative data analysis and interpretation: perceived benefits of WGS; perceived drawbacks of WGS; and perceptions of the return of results from WGS. Findings suggest that patients and their families have important perspectives on the use of WGS in diagnostic odyssey cases. These perspectives could inform clinical sequencing research study designs as well as the appropriate deployment of patient and family support services in the context of clinical genome sequencing.


Asunto(s)
Pruebas Genéticas/ética , Medicina de Precisión/psicología , Enfermedades Raras/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Actitud Frente a la Salud , Niño , Exoma , Femenino , Pruebas Genéticas/métodos , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Satisfacción del Paciente , Enfermedades Raras/diagnóstico , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/ética
10.
Cell ; 165(4): 1002-11, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27114037

RESUMEN

Studies of long-lived individuals have revealed few genetic mechanisms for protection against age-associated disease. Therefore, we pursued genome sequencing of a related phenotype-healthy aging-to understand the genetics of disease-free aging without medical intervention. In contrast with studies of exceptional longevity, usually focused on centenarians, healthy aging is not associated with known longevity variants, but is associated with reduced genetic susceptibility to Alzheimer and coronary artery disease. Additionally, healthy aging is not associated with a decreased rate of rare pathogenic variants, potentially indicating the presence of disease-resistance factors. In keeping with this possibility, we identify suggestive common and rare variant genetic associations implying that protection against cognitive decline is a genetic component of healthy aging. These findings, based on a relatively small cohort, require independent replication. Overall, our results suggest healthy aging is an overlapping but distinct phenotype from exceptional longevity that may be enriched with disease-protective genetic factors. VIDEO ABSTRACT.


Asunto(s)
Envejecimiento/genética , Estudio de Asociación del Genoma Completo , Longevidad , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Envejecimiento Cognitivo , Estudios de Cohortes , Enfermedad de la Arteria Coronaria/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA