Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochim Biophys Acta ; 1833(12): 3295-3305, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24120520

RESUMEN

Herp is an endoplasmic reticulum (ER) stress inducible protein that participates in the ER-associated protein degradation (ERAD) pathway. However, the contribution of Herp to other protein degradation pathways like autophagy and its connection to other types of stress responses remain unknown. Here we report that Herp regulates autophagy to clear poly-ubiquitin (poly-Ub) protein aggregates. Proteasome inhibition and glucose starvation (GS) led to a high level of poly-Ub protein aggregation that was drastically reduced by stably knocking down Herp (shHerp cells). The enhanced removal of poly-Ub inclusions protected cells from death caused by glucose starvation. Under basal conditions and increasingly after stress, higher LC3-II levels and GFP-LC3 puncta were observed in shHerp cells compared to control cells. Herp knockout cells displayed basal up-regulation of two essential autophagy regulators-Atg5 and Beclin-1, leading to increased autophagic flux. Beclin-1 up-regulation was due to a reduction in Hrd1 dependent proteasomal degradation, and not at transcriptional level. The consequent higher autophagic flux was necessary for the clearance of aggregates and for cell survival. We conclude that Herp operates as a relevant factor in the defense against glucose starvation by modulating autophagy levels. These data may have important implications due to the known up-regulation of Herp in pathological states such as brain and heart ischemia, both conditions associated to acute nutritional stress.


Asunto(s)
Autofagia , Citoprotección , Proteínas de la Membrana/deficiencia , Poliubiquitina/química , Regulación hacia Arriba , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/efectos de los fármacos , Beclina-1 , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glucosa/farmacología , Proteínas de la Membrana/metabolismo , Ratones , Modelos Biológicos , Poliubiquitina/metabolismo , Inhibidores de Proteasoma/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estructura Cuaternaria de Proteína , Regulación hacia Arriba/efectos de los fármacos
2.
Cardiovasc Res ; 98(2): 277-85, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23404999

RESUMEN

AIMS: Chaperone-mediated autophagy (CMA) is a selective mechanism for the degradation of soluble cytosolic proteins bearing the sequence KFERQ. These proteins are targeted by chaperones and delivered to lysosomes where they are translocated into the lysosomal lumen and degraded via the lysosome-associated membrane protein type 2A (LAMP-2A). Mutations in LAMP2 that inhibit autophagy result in Danon disease characterized by hypertrophic cardiomyopathy. The ryanodine receptor type 2 (RyR2) plays a key role in cardiomyocyte excitation-contraction and its dysfunction can lead to cardiac failure. Whether RyR2 is degraded by CMA is unknown. METHODS AND RESULTS: To induce CMA, cultured neonatal rat cardiomyocytes were treated with geldanamycin (GA) to promote protein degradation through this pathway. GA increased LAMP-2A levels together with its redistribution and colocalization with Hsc70 in the perinuclear region, changes indicative of CMA activation. The inhibition of lysosomes but not proteasomes prevented the loss of RyR2. The recovery of RyR2 content after incubation with GA by siRNA targeting LAMP-2A suggests that RyR2 is degraded via CMA. In silico analysis also revealed that the RyR2 sequence harbours six KFERQ motifs which are required for the recognition Hsc70 and its degradation via CMA. Our data suggest that presenilins are involved in RyR2 degradation by CMA. CONCLUSION: These findings are consistent with a model in which oxidative damage of the RyR2 targets it for turnover by presenilins and CMA, which could lead to removal of damaged or leaky RyR2 channels.


Asunto(s)
Autofagia , Chaperonas Moleculares/fisiología , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Secuencia de Aminoácidos , Animales , Benzoquinonas/farmacología , Lactamas Macrocíclicas/farmacología , Lisosomas/metabolismo , Datos de Secuencia Molecular , Isquemia Miocárdica/metabolismo , Estrés Oxidativo , Presenilinas/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Ratas , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/química
3.
Curr Hypertens Rep ; 14(6): 532-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22972531

RESUMEN

The process of muscle remodeling lies at the core of most cardiovascular diseases. Cardiac adaptation to pressure or volume overload is associated with a complex molecular change in cardiomyocytes which leads to anatomic remodeling of the heart muscle. Although adaptive at its beginnings, the sustained cardiac hypertrophic remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure and ultimately death. One of the features of cardiac remodeling is a progressive impairment in mitochondrial function. The heart has the highest oxygen uptake in the human body and accordingly it has a large number of mitochondria, which form a complex network under constant remodeling in order to sustain the high metabolic rate of cardiac cells and serve as Ca(2+) buffers acting together with the endoplasmic reticulum (ER). However, this high dependence on mitochondrial metabolism has its costs: when oxygen supply is threatened, high leak of electrons from the electron transport chain leads to oxidative stress and mitochondrial failure. These three aspects of mitochondrial function (Reactive oxygen species signaling, Ca(2+) handling and mitochondrial dynamics) are critical for normal muscle homeostasis. In this article, we will review the latest evidence linking mitochondrial morphology and function with the process of myocardial remodeling and cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Mitocondrias Cardíacas/metabolismo , Remodelación Ventricular , Calcio/metabolismo , Humanos , Estrés Oxidativo
4.
Cardiovasc Res ; 93(2): 320-9, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22135164

RESUMEN

AIMS: Insulin-like growth factor 1 (IGF-1) is known to exert cardioprotective actions. However, it remains unknown if autophagy, a major adaptive response to nutritional stress, contributes to IGF-1-mediated cardioprotection. METHODS AND RESULTS: We subjected cultured neonatal rat cardiomyocytes, as well as live mice, to nutritional stress and assessed cell death and autophagic rates. Nutritional stress induced by serum/glucose deprivation strongly induced autophagy and cell death, and both responses were inhibited by IGF-1. The Akt/mammalian target of rapamycin (mTOR) pathway mediated the effects of IGF-1 upon autophagy. Importantly, starvation also decreased intracellular ATP levels and oxygen consumption leading to AMP-activated protein kinase (AMPK) activation; IGF-1 increased mitochondrial Ca(2+) uptake and mitochondrial respiration in nutrient-starved cells. IGF-1 also rescued ATP levels, reduced AMPK phosphorylation and increased p70(S6K) phosphorylation, which indicates that in addition to Akt/mTOR, IGF-1 inhibits autophagy by the AMPK/mTOR axis. In mice harbouring a liver-specific igf1 deletion, which dramatically reduces IGF-1 plasma levels, AMPK activity and autophagy were increased, and significant heart weight loss was observed in comparison with wild-type starved animals, revealing the importance of IGF-1 in maintaining cardiac adaptability to nutritional insults in vivo. CONCLUSION: Our data support the cardioprotective actions of IGF-1, which, by rescuing the mitochondrial metabolism and the energetic state of cells, reduces cell death and controls the potentially harmful autophagic response to nutritional challenges. IGF-1, therefore, may prove beneficial to mitigate damage induced by excessive nutrient-related stress, including ischaemic disease in multiple tissues.


Asunto(s)
Autofagia/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/farmacología , Miocitos Cardíacos/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/fisiología , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Ratones , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/fisiología
5.
J Card Fail ; 17(12): 1012-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22123364

RESUMEN

BACKGROUND: Systemic endothelial dysfunction and increased oxidative stress have been observed in pulmonary arterial hypertension (PAH). We evaluate whether oxidative stress and endothelial dysfunction are associated with acute pulmonary vascular bed response to an inhaled prostanoid in PAH patients. METHODS: Fourteen idiopathic PAH patients and 14 controls were included. Oxidative stress was assessed through plasma malondialdehyde (MDA) levels and xanthine oxidase (XO) and endothelial-bound superoxide dismutase (eSOD) activity. Brachial artery endothelial-dependent flow-mediated vasodilation (FMD) was used to evaluate endothelial function. Hemodynamic response to inhaled iloprost was assessed with transthoracic echocardiography. RESULTS: PAH patients showed impaired FMD (2.8 ± 0.6 vs. 10.7 ± 0.6%, P < .01), increased MDA levels and XO activity (0.6 ± 0.2 vs. 0.3 ± 0.2 µM, P < .01 and 0.04 ± 0.01 vs. 0.03 ± 0.01 U/mL, P = .02, respectively) and decreased eSOD activity (235 ± 23 vs. 461 ± 33 AUC, P < .01). Iloprost improved right cardiac output (3.7 ± 0.6 to 4.1 ± 1.2 L/min, P = .02) and decreased pulmonary vascular resistance (4.1 ± 1.1 to 2.9 ± 0.9 Wood U, P = .01). Changes in right cardiac output after prostanoid inhalation correlated significantly with baseline eSOD activity and FMD (Rho: 0.61, P < .01 and Rho: 0.63, P = .01, respectively). CONCLUSION: PAH patients show increased systemic oxidative stress and endothelial dysfunction markers. Response to inhaled prostanoid is inversely related to both parameters.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Hipertensión Pulmonar/tratamiento farmacológico , Estrés Oxidativo , Prostaglandinas/efectos adversos , Prostaglandinas/uso terapéutico , Enfermedad Aguda , Administración por Inhalación , Adulto , Biomarcadores , Arteria Braquial/efectos de los fármacos , Estudios de Casos y Controles , Estudios Transversales , Endotelio Vascular/patología , Femenino , Hemodinámica/efectos de los fármacos , Humanos , Masculino , Malondialdehído/sangre , Estrés Oxidativo/efectos de los fármacos , Prostaglandinas/administración & dosificación , Arteria Pulmonar/efectos de los fármacos , Superóxido Dismutasa/sangre , Xantina Oxidasa/sangre
6.
Biochim Biophys Acta ; 1802(6): 509-18, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20176105

RESUMEN

Aggresomes are dynamic structures formed when the ubiquitin-proteasome system is overwhelmed with aggregation-prone proteins. In this process, small protein aggregates are actively transported towards the microtubule-organizing center. A functional role for autophagy in the clearance of aggresomes has also been proposed. In the present work we investigated the molecular mechanisms involved on aggresome formation in cultured rat cardiac myocytes exposed to glucose deprivation. Confocal microscopy showed that small aggregates of polyubiquitinated proteins were formed in cells exposed to glucose deprivation for 6 h. However, at longer times (18 h), aggregates formed large perinuclear inclusions (aggresomes) which colocalized with gamma-tubulin (a microtubule-organizing center marker) and Hsp70. The microtubule disrupting agent vinblastine prevented the formation of these inclusions. Both small aggregates and aggresomes colocalized with autophagy markers such as GFP-LC3 and Rab24. Glucose deprivation stimulates reactive oxygen species (ROS) production and decreases intracellular glutathione levels. ROS inhibition by N-acetylcysteine or by the adenoviral overexpression of catalase or superoxide dismutase disrupted aggresome formation and autophagy induced by glucose deprivation. In conclusion, glucose deprivation induces oxidative stress which is associated with aggresome formation and activation of autophagy in cultured cardiac myocytes.


Asunto(s)
Autofagia/fisiología , Glucosa/deficiencia , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Multimerización de Proteína , Acetilcisteína/farmacología , Adenosina Trifosfato/metabolismo , Animales , Autofagia/efectos de los fármacos , Catalasa/metabolismo , Células Cultivadas , Glucosa/metabolismo , Glutatión/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Cuerpos de Inclusión/metabolismo , Microscopía Electrónica de Transmisión , Centro Organizador de los Microtúbulos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , Ratas , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Tubulina (Proteína)/metabolismo , Ubiquitina/metabolismo
7.
Free Radic Biol Med ; 48(4): 526-34, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19969068

RESUMEN

We investigate here the role of reactive oxygen species and nitric oxide in iron-induced cardiomyocyte hypertrophy or cell death. Cultured rat cardiomyocytes incubated with 20 microM iron (added as FeCl(3)-Na nitrilotriacetate, Fe-NTA) displayed hypertrophy features that included increased protein synthesis and cell size, plus realignment of F-actin filaments along with sarcomeres and activation of the atrial natriuretic factor gene promoter. Incubation with higher Fe-NTA concentrations (100 microM) produced cardiomyocyte death by necrosis. Incubation for 24 h with Fe-NTA (20-40 microM) or the nitric oxide donor Delta-nonoate increased iNOS mRNA but decreased iNOS protein levels; under these conditions, iron stimulated the activity and the dimerization of iNOS. Fe-NTA (20 microM) promoted short- and long-term generation of reactive oxygen species, whereas preincubation with l-arginine suppressed this response. Preincubation with 20 microM Fe-NTA also attenuated the necrotic cell death triggered by 100 microM Fe-NTA, suggesting that these preincubation conditions have cardioprotective effects. Inhibition of iNOS activity with 1400 W enhanced iron-induced ROS generation and prevented both iron-dependent cardiomyocyte hypertrophy and cardioprotection. In conclusion, we propose that Fe-NTA (20 microM) stimulates iNOS activity and that the enhanced NO production, by promoting hypertrophy and enhancing survival mechanisms through ROS reduction, is beneficial to cardiomyocytes. At higher concentrations, however, iron triggers cardiomyocyte death by necrosis.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Hierro/metabolismo , Miocitos Cardíacos/metabolismo , Necrosis , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno , Animales , Apoptosis , Arginina/química , Dimerización , Radicales Libres , Hipertrofia , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas , Ratas Sprague-Dawley
8.
Rev. chil. cardiol ; 29(3): 291-298, 2010. ilus, tab
Artículo en Español | LILACS | ID: lil-592016

RESUMEN

Introducción: La Hipertensión arterial pulmonar (HP) se caracteriza por remodelado vascular y disfunción endotelial. Evidencia experimental muestra que el estrés oxidativo juega un rol importante en la patogénesis de la HP. El rol del estrés oxidativo, su relación con la función endotelial periférica y con la respuesta vascular pulmonar a vasodilatadores en pacientes con HP no está aclarada. Objetivo: evaluar parámetros de estrés oxidativo y función endotelial periférica en pacientes con HP y estudiar su relación con la respuesta vascular pulmonar frente a vasodilatadores. Métodos: estudio transversal. Se incluyeron 14 pacientes con HP y 14 controles pareados por edad y sexo. En todos los sujetos se midieron: niveles plasmáticos de malondialdehido (MDA), superóxido dismutasa ligada a endotelio (eSOD) y xantino oxidasa (eXO). Vasodilatación dependiente de endotelio mediada por flujo en arteria braquial fue usada como marcador de función endotelial (FDD). Función ventricular derecha y reactividad del lecho vascular pulmonar frente a iloprost inhalado fueron evaluadas ecocardiográficamente en los pacientes con HP Resultados: Los pacientes con HP presentaron FDD disminuida versus los controles (2,8 +/- 0,6 vs 10,7 por ciento +/- 0,6, p< 0,01). Niveles de MDA y eXO aumentados (0,61 +/- 0,17 vs 0,34 +/- 0,15uM, p<0,01 y 0,039 +/- 0,005 vs 0,034 +/- 0,004 U/mL1, p=0,02 respectivamente) y actividad de eSOD disminuida (235,55 +/- 23 vs 461,41 +/- 33 ABC, p<0,01). Iloprost mejora significativamente el gasto cardíaco derecho y disminuye la resistencia vascular pulmonar en los pacientes con HP y este cambio se correlaciona con la actividad de eSOD (Rho: 0,61, p<0,01) y FDD (Rho: 0,63, p=0,01). Conclusiones: Pacientes con HP presentan parámetros de estrés oxidativo elevados y disfunción endotelial periférica La respuesta hemodinámica frente al uso de Iloprost se correlaciona con estos parámetros sugiriendo un rol en la HP cuyo valor clínico deberá ser evaluado.


Background: Pulmonary Arterial Hypertension (PAH) is characterized by endothelial dysfunction and vascular remodeling. Several lines of experimental evidence indicate that oxidative stress plays an important role in the pathogenesis of PAH. The role of oxidative stress and its relation with peripheral endothelial function and pulmonary vascular response to vasodilators remains unknown. Aim: To evaluate whether systemic oxidative stress and endothelial dysfunction markers are associated with the response of the pulmonary vascular bed to inhaled vasodilators in PAH patients. Methods: Cross-sectional study Fourteen patients with PAH and 14 age and gender-matched controls were included. Systemic oxidative stress was assessed through plasma malondialdehyde (MDA), xanthine oxidase (eXO) levels and endothelial-bound superoxide dismutase (eSOD) activity Brachial artery endothelial-de-pendent flow-mediated vasodilation (FDD) was used to evaluate endothelial function. Right ventricular function and pulmonary vascular bed reactivity to inhaled vasodilators was determined with echocardiography in PAH patients. Results: Compared to controls, PAH patients showed impaired FDD (2.8 +/- 0.6 vs 10.7 percent +/- 0.6, p< 0.01), increased MDA and eXO levels (0.61 +/- 0.17 vs 0.34 +/- 0.15uM, p<0.01 and 0.039 +/- 0.005 vs 0.034 +/- 0.004 U/ mL1, p=0.02 , respectively) and decreased eSOD activity 235.55 +/- 23 vs 461.41 +/- 33 AUC, p<0.01). Iloprost significantly improved right cardiac output (RCO) and decreased pulmonary vascular resistance. The amount of change in RCO after iloprost inhalation correlated significantly with baseline eSOD activity and FDD (Rho: 0.61, p<0.01 and Rho: 0.63, p=0.01 respectively). Conclusions: PAH patients show increased oxidative stress and endothelial dysfunction markers. Response to inhaled iloprost is closely related with baseline endothelial function and oxidative stress parameters, suggesting an important role of these elements that re...


Asunto(s)
Humanos , Masculino , Adulto , Femenino , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/tratamiento farmacológico , Iloprost/administración & dosificación , Estrés Oxidativo , Vasodilatadores/administración & dosificación , Administración por Inhalación , Estudios de Casos y Controles , Estudios Transversales , Ecocardiografía , Endotelio Vascular/fisiopatología , Gasto Cardíaco , Malondialdehído/análisis , Resistencia Vascular , Superóxido Dismutasa/análisis , Disfunción Ventricular Derecha , Xantina Oxidasa/análisis
9.
FEBS Lett ; 583(21): 3485-92, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19818777

RESUMEN

We investigated the role of Ca(2+) in generating reactive oxygen species (ROS) induced by hyposmotic stress (Hypo) and its relationship to regulatory volume decrease (RVD) in cardiomyocytes. Hypo-induced increases in cytoplasmic and mitochondrial Ca(2+). Nifedipine (Nife) inhibited both Hypo-induced Ca(2+) and ROS increases. Overexpression of catalase (CAT) induced RVD and a decrease in Hypo-induced blebs. Nife prevented CAT-dependent RVD activation. These results show a dual role of Hypo-induced Ca(2+) influx in the control of cardiomyocyte viability. Hypo-induced an intracellular Ca(2+) increase which activated RVD and inhibited necrotic blebbing thus favoring cell survival, while simultaneously increasing ROS generation, which in turn inhibited RVD and induced necrosis.


Asunto(s)
Calcio/metabolismo , Tamaño de la Célula , Miocitos Cardíacos/citología , Especies Reactivas de Oxígeno/metabolismo , Animales , Transporte Biológico , Calcio/farmacología , Catalasa/metabolismo , Tamaño de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Regulación Enzimológica de la Expresión Génica , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Necrosis/metabolismo , Presión Osmótica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
10.
FEBS Lett ; 580(14): 3469-76, 2006 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-16716309

RESUMEN

NFkappaB is a participant in the process whereby cells adapt to stress. We have evaluated the activation of NFkappaB pathway by hyperosmotic stress in cultured cardiomyocytes and its role in the activation of caspase and cell death. Exposure of cultured rat cardiomyocytes to hyperosmotic conditions induced phosphorylation of IKKalpha/beta as well as degradation of IkappaBalpha. All five members of the NFkappaB family were identified in cardiomyocytes. Analysis of the subcellular distribution of NFkappaB isoforms in response to hyperosmotic stress showed parallel migration of p65 and RelB from the cytosol to the nucleus. Measurement of the binding of NFkappaB to the consensus DNA kappaB-site binding by EMSA revealed an oscillatory profile with maximum binding 1, 2 and 6h after initiation of the hyperosmotic stress. Supershift analysis revealed that p65 and RelB (but not p50, p52 or cRel) were involved in the binding of NFkappaB to DNA. Hyperosmotic stress also resulted in activation of the NFkappaB-lux reporter gene, transient activation of caspases 9 and 3 and phosphatidylserine externalization. The effect on cell viability was not prevented by ZVAD (a general caspase inhibitor). Blockade of NFkappaB with AdIkappaBalpha, an IkappaBalpha dominant negative overexpressing adenovirus, prevented activation of caspase 9 (more than that caspase 3) but did not affect cell death in hyperosmotically stressed cardiomyocytes. We conclude that hyperosmotic stress activates p65 and RelB NFkappaB isoforms and NFkappaB mediates caspase 9 activation in cardiomyocytes. However cell death triggered by hyperosmotic stress was caspase- and NFkappaB-independent.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Miocardio/metabolismo , Factor de Transcripción ReIB/metabolismo , Animales , Células Cultivadas , Activación Enzimática , Miocardio/citología , Miocardio/enzimología , Presión Osmótica , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...