Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Radiother ; 27(5): 355-361, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37085341

RESUMEN

PURPOSE: Adaptive radiotherapy with the Ethos® therapy Varian system has been recently implemented at the Montpellier Cancer Institute, France. This article details the commissioning performed before the implementation of this new treatment planning system (TPS). MATERIAL AND METHODS: To validate the golden beam data of the machine (Halcyon linear accelerator), percentage depth doses (PDD) and profiles were measured for several field sizes and at different depths with a microdiamond chamber. The final doses calculated for different plan types with the Ethos Acuros XB algorithm and the Halcyon Eclipse Analytic Anisotropic Algorithm were compared using the gamma index method. Lastly, for the patient quality assurance (QA) process, the patient treatment plan results obtained with the Mobius3D QA platform (Varian) were compared with the portal dosimetry results obtained with Epiqa (Epidos). RESULTS: Minor differences were observed for the PDD and profile curves (mean difference of 0.2% and 2%, respectively). The χ index pass rate was above 98% for all measures using the 1%/1mm and 2%/2mm criteria for PDD and profile evaluations. The Ethos AXB algorithm was validated for every configuration (fixed fields, standard IMRT and VMAT fields, and clinical plans) with 2D/3D gamma index values>99%. Seventy-three 3-arcs-VMAT QA plans and 27 9-fields-IMRT QA plans were evaluated. Both showed excellent agreement with the TPS calculations (mean gamma pass rate higher than 99%). No difference was observed between IMRT and VMAT. CONCLUSION: The beam delivery, the Ethos AXB algorithm, and the patient QA were comprehensively validated using independent tools.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radiometría , Algoritmos , Aceleradores de Partículas
2.
EJNMMI Res ; 11(1): 1, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33394212

RESUMEN

BACKGROUND: The aim of this study was to compare a commercial dosimetry workstation (PLANET® Dose) and the dosimetry approach (GE Dosimetry Toolkit® and OLINDA/EXM® V1.0) currently used in our department for quantification of the absorbed dose (AD) to organs at risk after peptide receptor radionuclide therapy with [177Lu]Lu-DOTA-TATE. METHODS: An evaluation on phantom was performed to determine the SPECT calibration factor variations over time and to compare the Time Integrated Activity Coefficients (TIACs) obtained with the two approaches. Then, dosimetry was carried out with the two tools in 21 patients with neuroendocrine tumours after the first and second injection of 7.2 ± 0.2 GBq of [177Lu]Lu-DOTA-TATE (40 dosimetry analyses with each software). SPECT/CT images were acquired at 4 h, 24 h, 72 h and 192 h post-injection and were reconstructed using the Xeleris software (General Electric). The liver, spleen and kidneys masses and TIACs were determined using Dosimetry Toolkit® (DTK) and PLANET® Dose. The ADs were calculated using OLINDA/EXM® V1.0 and the Local Deposition Method (LDM) or Dose voxel-Kernel convolution (DK) on PLANET® Dose. RESULTS: With the phantom, the 3D calibration factors showed a slight variation (0.8% and 3.3%) over time, and TIACs of 225.19 h and 217.52 h were obtained with DTK and PLANET® Dose, respectively. In patients, the root mean square deviation value was 8.9% for the organ masses, 8.1% for the TIACs, and 9.1% and 7.8% for the ADs calculated with LDM and DK, respectively. The Lin's concordance correlation coefficient was 0.99 and the Bland-Altman plot analysis estimated that the AD value difference between methods ranged from - 0.75 to 0.49 Gy, from - 0.20 to 0.64 Gy, and from - 0.43 to 1.03 Gy for 95% of the 40 liver, kidneys and spleen dosimetry analyses. The dosimetry method had a minor influence on AD differences compared with the image registration and organ segmentation steps. CONCLUSIONS: The ADs to organs at risk obtained with the new workstation PLANET® Dose are concordant with those calculated with the currently used software and in agreement with the literature. These results validate the use of PLANET® Dose in clinical routine for patient dosimetry after targeted radiotherapy with [177Lu]Lu-DOTA-TATE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...