RESUMEN
Invasive plants displaying disparate pollination environments and abiotic conditions in native and non-native ranges provide ideal systems to test the role of different ecological factors driving flower colour variation. We quantified corolla reflectance of the ornithophilous South American Nicotiana glauca in native populations, where plants are pollinated by hummingbirds, and in populations from two invaded regions: South Africa, where plants are pollinated by sunbirds, and the Balearic island of Mallorca, where plants reproduce by selfing. Using visual modelling we examined how corolla reflectance could be perceived by floral visitors present in each region. Through Mantel tests we assessed a possible association between flower colour and different abiotic factors. Corolla reflectance variation (mainly along medium to long wavelengths, i.e. human green-yellow to red colours) was greater among studied regions than within them. Flower colour was more similar between South America and South Africa, which share birds as pollinators. Within invaded regions, corolla reflectance variation was lower in South Africa, where populations could not be distinguished from each other by sunbirds, than in Spain, where populations could be distinguished from each other by their occasional visitors. Differences in corolla colour among populations were partially associated with differences in temperature. Our findings suggest that shifts in flower colour of N. glauca across native and invaded ranges could be shaped by changes in both pollination environment and climatic factors. This is the first study on plant invasions considering visual perception of different pollinators and abiotic drivers of flower colour variation.
Asunto(s)
Nicotiana , Polinización , Animales , Humanos , Color , Plantas , Flores , Aves , PercepciónRESUMEN
Seed dispersal and seedling recruitment are crucial phases in the life cycle of all spermatophyte plants. The net contribution of seed dispersers to plant establishment is known as seed dispersal effectiveness (SDE) and is defined as the product of a quantitative (number of seeds dispersed) and a qualitative (probability of recruitment) component. In Galápagos, we studied the direct contribution to SDE (number of seeds dispersed and effect on seedling emergence) provided by the five island groups of frugivores (giant tortoises, lizards, medium-sized passerine birds, small non-finch passerine birds, and finches) in the two main habitats in this archipelago: the lowland and the highland zones, and found 16 vertebrate species dispersing 58 plant species. Data on frequency of occurrence of seeds in droppings and number of seeds dispersed per unit area produced contrasting patterns of seed dispersal. Based on the former, giant tortoises and medium-sized passerines were the most important seed dispersers. However, based on the latter, small non-finch passerines were the most important dispersers, followed by finches and medium-sized passerines. The effect of disperser gut passage on seedling emergence varied greatly depending on both the disperser and the plant species. Although the contribution to SDE provided by different disperser guilds changed across plant species, medium-sized passerines (e.g., mockingbirds) provided a higher contribution to SDE than lava lizards in 10 out of 16 plant species analysed, whereas lava lizards provided a higher contribution to SDE than birds in five plant species. While both the quantitative and qualitative components addressed are important, our data suggests that the former is a better predictor of SDE in the Galápagos archipelago.