Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
1.
bioRxiv ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39314424

RESUMEN

Gram-negative bacteria produce a multilayered cell envelope in which their peptidoglycan is sandwiched between two membranes, an inner membrane made of glycerophospholipids and an asymmetric outer membrane with glycerophospholipids in the inner leaflet and lipopolysaccharide (LPS) in the outer leaflet. The Acinetobacter baumannii outer membrane contains lipooligosaccharide (LOS), a variant of LPS lacking O-antigen. LPS/LOS is typically essential, but A. baumannii can survive without LOS. Previously, we found that the peptidoglycan biogenesis protein NlpD becomes essential during LOS-deficiency. NlpD is typically redundant and is one of the cell's amidase activators for regulating peptidoglycan degradation, a process critical for cell division. We found that NlpD is essential under these conditions because a second putative amidase activator, termed WthA (cell w all turnover h ub protein A ), no longer functions in LOS-deficient cells. Mutants lacking WthA had severe cell division defects and were synthetically sick with loss of NlpD. Both Acinetobacter WthA and NlpD were found to activate an amidase activity of Oxa51, a chromosomally encoded ß -lactamase. Further, WthA is homologous to Pseudomonas LbcA that impacts two other classes of peptidoglycan degradation enzymes, endopeptidases and lytic transglycosylases. WthA/LbcA homologs were identified across Proteobacteria, Bacteroidota, and Chlorobiota, suggesting they belong to a conserved family involved in regulation of peptidoglycan turnover. While Acinetobacter WthA may share functions of Pseudomonas LbcA, we found no evidence that LbcA is an amidase activator. Altogether, we have identified a missing player in Acinetobacter peptidoglycan biogenesis, a conserved hub protein that regulates multiple peptidoglycan turnover enzymes including cell division amidases. Significance Statement: Peptidoglycan is a rigid layer that provides structural support to bacterial cells. Peptidoglycan must be degraded to make room for new synthesis and for cells to divide, a process termed turnover. Turnover enzymes are tightly regulated to prevent their activities from lysing the cell. The critical pathogen Acinetobacter baumannii was missing known peptidoglycan amidases, a class of turnover enzymes, and the key activator that controls their activity during cell division. We have identified WthA as having a role in cell division most likely as an amidase activator. WthA homologs were widely distributed in bacteria and the closely related LbcA in Pseudomonas impacts two other types of turnover enzymes. We explore the possible functions of this new family of proteins that serves as a hub for impacting peptidoglycan turnover.

3.
J Voice ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39217084

RESUMEN

OBJECTIVE: Adductor laryngeal dystonia (AdLD) disrupts fine motor movements of vocal folds during speech, resulting in a strained, broken, and strangled voice. Laryngeal high-speed videoendoscopy (HSV) in connected speech enables the direct visualization of detailed laryngeal dynamics, hence, it can be effectively used to study AdLD. The current study utilizes HSV to investigate supraglottic laryngeal tissue maneuvers obstructing the view of the vocal folds, in AdLD and normophonic speakers during connected speech. Characterizing the laryngeal maneuvers in these groups can facilitate a deeper understanding of the normophonic voice physiology and AdLD voice pathophysiology. METHODS: HSV data were obtained from six normophonic speakers and six patients with AdLD during production of connected speech. Three experienced raters visually analyzed the data to determine laryngeal tissues leading to obstructions of vocal folds in HSV images. The raters recorded the duration of each obstruction and indicated the specific tissue(s) leading to the obstruction. After the completion of their individual visual analysis, the raters came to consensus about their observations and measurements. RESULTS: Statistical analysis indicated that AdLD patients exhibited higher occurrences of vocal fold obstructions and longer durations of obstructions compared with the normophonic group. Similar obstruction types were found in both groups, with the epiglottis being the primary site of obstruction for both. Participants with AdLD displayed significantly elevated occurrences of sphincteric compression resulting in vocal fold obstruction. CONCLUSION: HSV can be used to study the movements of laryngeal tissues in detail during connected speech. The analysis of supraglottic laryngeal tissue dynamics in speech can help us characterize the AdLD pathophysiology. The study's findings regarding the tissues implicated in obstructions may potentially inform the development of patient-specific therapeutic strategies targeting individual control over specific laryngeal muscles during phonation and speech production.

4.
Appl Neuropsychol Adult ; : 1-8, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967491

RESUMEN

Motor assessment has emerged as complementary evidence for the detection of late life cognitive disorders. Clinicians lack inexpensive, accurate, and portable tools for this purpose. To fill this void, the current study piloted measures from the Mizzou Point-of-care Assessment System a multimodal sensor platform. We examined the ability of these motor function measures to distinguish neurocognitive status and assessed their associations with cognitive performance. Data came from 42 older adults, including 16 with mild cognitive impairment (MCI). Participants performed dual task gait, pairing walking with serial subtraction by sevens, along with aa neuropsychological test battery. T-tests revealed that individuals with MCI demonstrated slower stride times (d = .55) and shorter stride lengths (d = .98) compared to healthy older adults. Results from hierarchical regression showed that stride time and stride length predicted cognitive performance across several domains, after controlling for cognitive status and demographics. Cognitive status moderated this relationship for global cognition and attention, wherein gait measures were significantly related to these outcomes for the cognitively normal group, but not the MCI group. Evidence from the current study provided preliminary support that MPASS measures demonstrate expected associations with cognitive performance and can distinguish amongst those with and without cognitive impairment.

5.
bioRxiv ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39005286

RESUMEN

Cranial radiation therapy (RT) for brain cancers leads to an irreversible decline in cognitive function without an available remedy. Radiation-induced cognitive deficits (RICD) are particularly a pressing problem for the survivors of pediatric and low grade glioma (LGG) patients who often live long post-RT. Radiation-induced elevated neuroinflammation and gliosis, triggered by the detrimental CNS complement cascade, lead to excessive synaptic and cognitive loss. Using intact and brain cancer-bearing mouse models, we now show that targeting anaphylatoxin complement C5a receptor (C5aR1) is neuroprotective against RICD. We used a genetic knockout, C5aR1 KO mouse, and a pharmacologic approach, employing the orally active, brain penetrant C5aR1 antagonist PMX205, to reverse RICD. Irradiated C5aR1 KO and WT mice receiving PMX205 showed significant neurocognitive improvements in object recognition memory and memory consolidation tasks. C5aR1 inhibition reduced microglial activation, astrogliosis, and synaptic loss in the irradiated brain. Importantly, C5aR1 inhibition in the syngeneic, orthotopic astrocytoma, and glioblastoma-bearing mice protected against RICD without interfering with the therapeutic efficacy of RT to reduce tumor volume in vivo . PMX205 is currently in clinical trials for amyotrophic lateral sclerosis (ALS). Thus, C5aR1 inhibition is a translationally feasible approach to address RICD, an unmet medical need.

6.
Anal Chem ; 96(31): 12676-12683, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39038171

RESUMEN

Gram-negative bacteria develop and exhibit resistance to antibiotics, owing to their highly asymmetric outer membrane maintained by a group of six proteins comprising the Mla (maintenance of lipid asymmetry) pathway. Here, we investigate the lipid binding preferences of one Mla protein, MlaC, which transports lipids through the periplasm. We used ultraviolet photodissociation (UVPD) to identify and characterize modifications of lipids endogenously bound to MlaC expressed in three different bacteria strains. UVPD was also used to localize lipid binding to MlaC residues 130-140, consistent with the crystal structure reported for lipid-bound MlaC. The impact of removing the bound lipid from MlaC on its structure was monitored based on collision cross section measurements, revealing that the protein unfolded prior to release of the lipid. The lipid selectivity of MlaC was evaluated based on titrimetric experiments, indicating that MlaC-bound lipids in various classes (sphingolipids, glycerophospholipids, and fatty acids) as long as they possessed no more than two acyl chains.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Rayos Ultravioleta , Temperatura , Lípidos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/química , Procesos Fotoquímicos
7.
Front Neurol ; 15: 1384480, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915800

RESUMEN

Huntington's disease (HD) is a debilitating neurodegenerative condition characterized by motor, cognitive and psychiatric abnormalities. Immune dysregulation, prominently featuring increased immune activity, plays a significant role in HD pathogenesis. In addition to the central nervous system (CNS), systemic innate immune activation and inflammation are observed in HD patients, exacerbating the effects of the Huntingtin (HTT) gene mutation. Recent attention to sex differences in HD symptom severity underscores the need to consider gender as a biological variable in neurodegenerative disease research. Understanding sex-specific immune responses holds promise for elucidating HD pathophysiology and informing targeted treatment strategies to mitigate cognitive and functional decline. This perspective will highlight the importance of investigating gender influence in HD, particularly focusing on sex-specific immune responses predisposing individuals to disease.

8.
Nutr Diabetes ; 14(1): 46, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902253

RESUMEN

BACKGROUND: Dietary-resistant starch is emerging as a potential therapeutic tool to limit the negative effects of diabetes on the kidneys. However, its metabolic and immunomodulatory effects have not yet been fully elucidated. METHODS: Six-week-old db/db mice were fed a diet containing 12.5% resistant starch or a control diet matched for equivalent regular starch for 10 weeks. db/m mice receiving the control diet were utilised as non-diabetic controls. Freshly collected kidneys were digested for flow cytometry analysis of immune cell populations. Kidney injury was determined by measuring albuminuria, histology, and immunohistochemistry. Portal vein plasma was collected for targeted analysis of microbially-derived metabolites. Intestinal histology and tight junction protein expression were assessed. RESULTS: Resistant starch limited the development of albuminuria in db/db mice. Diabetic db/db mice displayed a decline in portal vein plasma levels of acetate, propionate, and butyrate, which was increased with resistant starch supplementation. Diabetic db/db mice receiving resistant starch had a microbially-derived metabolite profile similar to that of non-diabetic db/m mice. The intestinal permeability markers lipopolysaccharide and lipopolysaccharide binding protein were increased in db/db mice consuming the control diet, which was not seen in db/db mice receiving resistant starch supplementation. Diabetes was associated with an increase in the kidney neutrophil population, neutrophil activation, number of C5aR1+ neutrophils, and urinary complement C5a excretion, all of which were reduced with resistant starch. These pro-inflammatory changes appear independent of fibrotic changes in the kidney. CONCLUSIONS: Resistant starch supplementation in diabetes promotes beneficial circulating microbially-derived metabolites and improves intestinal permeability, accompanied by a modulation in the inflammatory profile of the kidney including neutrophil infiltration, complement activation, and albuminuria. These findings indicate that resistant starch can regulate immune and inflammatory responses in the kidney and support the therapeutic potential of resistant starch supplementation in diabetes on kidney health.


Asunto(s)
Albuminuria , Nefropatías Diabéticas , Riñón , Infiltración Neutrófila , Animales , Ratones , Riñón/metabolismo , Masculino , Infiltración Neutrófila/efectos de los fármacos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/dietoterapia , Almidón Resistente/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Almidón/farmacología , Diabetes Mellitus Experimental/metabolismo , Ratones Endogámicos C57BL
9.
mBio ; 15(6): e0079024, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38742872

RESUMEN

Loss of the Escherichia coli inner membrane protein YhcB results in pleomorphic cell morphology and clear growth defects. Prior work suggested that YhcB was directly involved in cell division or peptidoglycan assembly. We found that loss of YhcB is detrimental in genetic backgrounds in which lipopolysaccharide (LPS) or glycerophospholipid (GPL) synthesis is altered. The growth defect of ΔyhcB could be rescued through inactivation of the Mla pathway, a system responsible for the retrograde transport of GPLs that are mislocalized to the outer leaflet of the outer membrane. Interestingly, this rescue was dependent upon the outer membrane phospholipase PldA that cleaves GPLs at the bacterial surface. Since the freed fatty acids resulting from PldA activity serve as a signal to the cell to increase LPS synthesis, this result suggested that outer membrane lipids are imbalanced in ΔyhcB. Mutations that arose in ΔyhcB populations during two independent suppressor screens were in genes encoding subunits of the acetyl coenzyme A carboxylase complex, which initiates fatty acid biosynthesis (FAB). These mutations fully restored cell morphology and reduced GPL levels, which were increased compared to wild-type bacteria. Growth of ΔyhcB with the FAB-targeting antibiotic cerulenin also increased cellular fitness. Furthermore, genetic manipulation of FAB and lipid biosynthesis showed that decreasing FAB rescued ΔyhcB filamentation, whereas increasing LPS alone could not. Altogether, these results suggest that YhcB may play a pivotal role in regulating FAB and, in turn, impact cell envelope assembly and cell division.IMPORTANCESynthesis of the Gram-negative cell envelope is a dynamic and complex process that entails careful coordination of many biosynthetic pathways. The inner and outer membranes are composed of molecules that are energy intensive to synthesize, and, accordingly, these synthetic pathways are under tight regulation. The robust nature of the Gram-negative outer membrane renders it naturally impermeable to many antibiotics and therefore a target of interest for antimicrobial design. Our data indicate that when the inner membrane protein YhcB is absent in Escherichia coli, the pathway for generating fatty acid substrates needed for all membrane lipid synthesis is dysregulated which leads to increased membrane material. These findings suggest a potentially novel regulatory mechanism for controlling the rate of fatty acid biosynthesis.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Ácidos Grasos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis , Glicerofosfolípidos/metabolismo , Lipopolisacáridos/biosíntesis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
10.
Trends Immunol ; 45(6): 397-399, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38637200

RESUMEN

The persistence or recurrence of symptoms after acute SARS-CoV-2 infection, termed 'long COVID', presents a formidable challenge to global healthcare systems. Recent research by Cervia-Hasler and colleagues delves into the intricate immunological landscape in patients with long COVID, demonstrating an interplay between complement and coagulation, driven by antiviral antibodies and tissue damage.


Asunto(s)
COVID-19 , Proteínas del Sistema Complemento , SARS-CoV-2 , Humanos , COVID-19/inmunología , SARS-CoV-2/inmunología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Tromboinflamación/inmunología , Coagulación Sanguínea/inmunología , Síndrome Post Agudo de COVID-19 , Activación de Complemento/inmunología , Anticuerpos Antivirales/inmunología
11.
J Immunol ; 212(11): 1754-1765, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639635

RESUMEN

Mauritian-origin cynomolgus macaques (MCMs) serve as a powerful nonhuman primate model in biomedical research due to their unique genetic homogeneity, which simplifies experimental designs. Despite their extensive use, a comprehensive understanding of crucial immune-regulating gene families, particularly killer Ig-like receptors (KIR) and NK group 2 (NKG2), has been hindered by the lack of detailed genomic reference assemblies. In this study, we employ advanced long-read sequencing techniques to completely assemble eight KIR and seven NKG2 genomic haplotypes, providing an extensive insight into the structural and allelic diversity of these immunoregulatory gene clusters. Leveraging these genomic resources, we prototype a strategy for genotyping KIR and NKG2 using short-read, whole-exome capture data, illustrating the potential for cost-effective multilocus genotyping at colony scale. These results mark a significant enhancement for biomedical research in MCMs and underscore the feasibility of broad-scale genetic investigations.


Asunto(s)
Haplotipos , Macaca fascicularis , Receptores KIR , Animales , Receptores KIR/genética , Macaca fascicularis/genética , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Genómica/métodos , Genotipo
12.
Sci Transl Med ; 16(744): eadg5768, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657024

RESUMEN

Sepsis is a life-threatening disease caused by a dysregulated host response to infection, resulting in 11 million deaths globally each year. Vascular endothelial cell dysfunction results in the loss of endothelial barrier integrity, which contributes to sepsis-induced multiple organ failure and mortality. Erythropoietin-producing hepatocellular carcinoma (Eph) receptors and their ephrin ligands play a key role in vascular endothelial barrier disruption but are currently not a therapeutic target in sepsis. Using a cecal ligation and puncture (CLP) mouse model of sepsis, we showed that prophylactic or therapeutic treatment of mice with EphA4-Fc, a decoy receptor and pan-ephrin inhibitor, resulted in improved survival and a reduction in vascular leak, lung injury, and endothelial cell dysfunction. EphA2-/- mice also exhibited reduced mortality and pathology after CLP compared with wild-type mice. Proteomics of plasma samples from mice with sepsis after CLP revealed dysregulation of a number of Eph/ephrins, including EphA2/ephrin A1. Administration of EphA4-Fc to cultured human endothelial cells pretreated with TNF-α or ephrin-A1 prevented loss of endothelial junction proteins, specifically VE-cadherin, with maintenance of endothelial barrier integrity. In children admitted to hospital with fever and suspected infection, we observed that changes in EphA2/ephrin A1 in serum samples correlated with endothelial and organ dysfunction. Targeting Eph/ephrin signaling may be a potential therapeutic strategy to reduce sepsis-induced endothelial dysfunction and mortality.


Asunto(s)
Células Endoteliales , Efrinas , Sepsis , Transducción de Señal , Animales , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/patología , Humanos , Células Endoteliales/metabolismo , Ratones , Efrinas/metabolismo , Ratones Endogámicos C57BL , Receptores de la Familia Eph/metabolismo , Ciego/patología , Masculino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Modelos Animales de Enfermedad
13.
Biol Psychiatry Glob Open Sci ; 4(3): 100306, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38628385

RESUMEN

Background: Accumulating evidence underscores the pivotal role of heightened inflammation in the pathophysiology of stress-related diseases, but the underlying mechanisms remain elusive. The complement system, a key effector of the innate immune system, produces the C5-cleaved activation product C5a upon activation, initiating inflammatory responses through the canonical C5a receptor 1 (C5aR1). While C5aR1 is expressed in stress-responsive brain regions, its role in stress responsiveness remains unknown. Methods: To investigate C5a-C5aR1 signaling in stress responses, mice underwent acute and chronic stress paradigms. Circulating C5a levels and messenger RNA expression of C5aR1 in the hippocampus and adrenal gland were measured. C5aR1-deficient mice were used to elucidate the effects of disrupted C5a-C5aR1 signaling across behavioral, hormonal, metabolic, and inflammation parameters. Results: Chronic restraint stress elevated circulating C5a levels while reducing C5aR1 messenger RNA expression in the hippocampus and adrenal gland. Notably, the absence of C5aR1 signaling enhanced adrenal sensitivity to adrenocorticotropic hormone, concurrently reducing pituitary adrenocorticotropic hormone production and enhancing the response to acute stress. C5aR1-deficient mice exhibited attenuated reductions in locomotor activity and body weight under chronic stress. Additionally, these mice displayed increased glucocorticoid receptor sensitivity and disrupted glucose and insulin homeostasis. Chronic stress induced an increase in C5aR1-expressing microglia in the hippocampus, a response mitigated in C5aR1-deficient mice. Conclusions: C5a-C5aR1 signaling emerges as a key metabolic regulator during stress, suggesting that complement activation and dysfunctional C5aR1 signaling may contribute to neuroinflammatory phenotypes in stress-related disorders. The results advocate for further exploration of complement C5aR1 as a potential therapeutic target for stress-related conditions.


How the immune system, particularly the complement system, influences responses to stress has not been fully clear. In this study, we focus on C5a-C5aR1 signaling, a part of the immune system, and found that it significantly affects stress-related reactions in mice. In chronic stress, we observed increased inflammation, altered hormonal responses, and disrupted metabolic regulation. Mice lacking C5aR1 showed reduced stress-induced behavioral changes, indicating that this receptor may play a vital role in modulating the stress response. Understanding these immune mechanisms sheds light on stress-related disorders and may open avenues for therapeutic interventions.

14.
PLoS Biol ; 22(3): e3002558, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38478588

RESUMEN

Polyphosphates (polyP) are chains of inorganic phosphates that can reach over 1,000 residues in length. In Escherichia coli, polyP is produced by the polyP kinase (PPK) and is thought to play a protective role during the response to cellular stress. However, the molecular pathways impacted by PPK activity and polyP accumulation remain poorly characterized. In this work, we used label-free mass spectrometry to study the response of bacteria that cannot produce polyP (Δppk) during starvation to identify novel pathways regulated by PPK. In response to starvation, we found 92 proteins significantly differentially expressed between wild-type and Δppk mutant cells. Wild-type cells were enriched for proteins related to amino acid biosynthesis and transport, while Δppk mutants were enriched for proteins related to translation and ribosome biogenesis, suggesting that without PPK, cells remain inappropriately primed for growth even in the absence of the required building blocks. From our data set, we were particularly interested in Arn and EptA proteins, which were down-regulated in Δppk mutants compared to wild-type controls, because they play a role in lipid A modifications linked to polymyxin resistance. Using western blotting, we confirm differential expression of these and related proteins in K-12 strains and a uropathogenic isolate, and provide evidence that this mis-regulation in Δppk cells stems from a failure to induce the BasRS two-component system during starvation. We also show that Δppk mutants unable to up-regulate Arn and EptA expression lack the respective L-Ara4N and pEtN modifications on lipid A. In line with this observation, loss of ppk restores polymyxin sensitivity in resistant strains carrying a constitutively active basR allele. Overall, we show a new role for PPK in lipid A modification during starvation and provide a rationale for targeting PPK to sensitize bacteria towards polymyxin treatment. We further anticipate that our proteomics work will provide an important resource for researchers interested in the diverse pathways impacted by PPK.


Asunto(s)
Escherichia coli , Lipopolisacáridos , Fosfotransferasas (Aceptor del Grupo Fosfato) , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Lípido A/metabolismo , Polifosfatos/metabolismo
15.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458648

RESUMEN

Plexiform neurofibromas (PNFs) are nerve tumors caused by loss of NF1 and dysregulation of RAS-MAPK signaling in Schwann cells. Most PNFs shrink in response to MEK inhibition, but targets with increased and durable effects are needed. We identified the anaphylatoxin C5a as increased in PNFs and expressed largely by PNF m acrophages. We defined pharmacokinetic and immunomodulatory properties of a C5aR1/2 antagonist and tested if peptide antagonists augment the effects of MEK inhibition. MEK inhibition recruited C5AR1 to the macrophage surface; short-term inhibition of C5aR elevated macrophage apoptosis and Schwann cell death, without affecting MEK-induced tumor shrinkage. PNF macrophages lacking C5aR1 increased the engulfment of dying Schwann cells, allowing their visualization. Halting combination therapy resulted in altered T-cell distribution, elevated Iba1+ and CD169+ immunoreactivity, and profoundly altered cytokine expression, but not sustained trumor shrinkage. Thus, C5aRA inhibition independently induces macrophage cell death and causes sustained and durable effects on the PNF microenvironment.


Asunto(s)
Citofagocitosis , Neurofibroma Plexiforme , Humanos , Macrófagos/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos , Neurofibroma Plexiforme/patología , Transducción de Señal , Microambiente Tumoral
16.
Microbiology (Reading) ; 170(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38450586

RESUMEN

Lipopolysaccharide (LPS) is a fundamental tripartite glycolipid found on the surface of nearly all Gram-negative bacteria. It acts as a protective shield for the bacterial cell and is a potent agonist of the innate immune system. This primer serves to introduce the basic properties of LPS, its function in bacterial physiology and pathogenicity, and its use as a therapeutic target.


Asunto(s)
Bacterias Gramnegativas , Lipopolisacáridos , Bacterias Gramnegativas/genética
17.
Conserv Physiol ; 12(1): coae001, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343721

RESUMEN

The thermally dynamic nearshore Beaufort Sea, Alaska, is experiencing climate change-driven temperature increases. Measuring thermal tolerance of broad whitefish (Coregonus nasus) and saffron cod (Eleginus gracilis), both important species in the Arctic ecosystem, will enhance understanding of species-specific thermal tolerances. The objectives of this study were to determine the extent that acclimating broad whitefish and saffron cod to 5°C and 15°C changed their critical thermal maximum (CTmax) and HSP70 protein and mRNA expression in brain, muscle and liver tissues. After acclimation to 5°C and 15°C, the species were exposed to a thermal ramping rate of 3.4°C · h-1 before quantifying the CTmax and HSP70 protein and transcript concentrations. Broad whitefish and saffron cod acclimated to 15°C had a significantly higher mean CTmax (27.3°C and 25.9°C, respectively) than 5°C-acclimated fish (23.7°C and 23.2°C, respectively), which is consistent with trends in CTmax between higher and lower acclimation temperatures. There were species-specific differences in thermal tolerance with 15°C-acclimated broad whitefish having higher CTmax and HSP70 protein concentrations in liver and muscle tissues than saffron cod at both acclimation temperatures. Tissue-specific differences were quantified, with brain and muscle tissues having the highest and lowest HSP70 protein concentrations, respectively, for both species and acclimation temperatures. The differences in broad whitefish CTmax between the two acclimation temperatures could be explained with brain and liver tissues from 15°C acclimation having higher HSP70a-201 and HSP70b-201 transcript concentrations than control fish that remained in lab-acclimation conditions of 8°C. The shift in CTmax and HSP70 protein and paralogous transcripts demonstrate the physiological plasticity that both species possess in responding to two different acclimation temperatures. This response is imperative to understand as aquatic temperatures continue to elevate.

18.
mBio ; 15(3): e0301323, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349180

RESUMEN

A fundamental feature of Gram-negative bacteria is their outer membrane that protects the cell against environmental stressors. This defense is predominantly due to its asymmetry, with glycerophospholipids located in the inner leaflet and lipopolysaccharide (LPS) or lipooligosaccharide (LOS) confined to the outer leaflet. LPS consists of a lipid A anchor, a core oligosaccharide, and a distal O-antigen while LOS lacks O-antigen. While LPS/LOS is typically essential for growth, this is not the case for Acinetobacter baumannii. Despite this unique property, the synthesis of the core oligosaccharide of A. baumannii LOS is not well-described. Here, we characterized the LOS chemotypes of A. baumannii strains with mutations in a predicted core oligosaccharide locus via tandem mass spectrometry. This allowed for an extensive identification of genes required for core assembly that can be exploited to generate precise structural LOS modifications in many A. baumannii strains. We further investigated two chemotypically identical yet phenotypically distinct mutants, ∆2903 and ∆lpsB, that exposed a possible link between LOS and the peptidoglycan cell wall-two cell envelope components whose coordination has not yet been described in A. baumannii. Selective reconstruction of the core oligosaccharide via expression of 2903 and LpsB revealed that these proteins rely on each other for the unusual tandem transfer of two residues, KdoIII and N-acetylglucosaminuronic acid. The data presented not only allow for better usage of A. baumannii as a tool to study outer membrane integrity but also provide further evidence for a novel mechanism of core oligosaccharide assembly. IMPORTANCE: Acinetobacter baumannii is a multidrug-resistant pathogen that produces lipooligosaccharide (LOS), a glycolipid that confers protective asymmetry to the bacterial outer membrane. The core oligosaccharide is a ubiquitous component of LOS that typically follows a well-established model of synthesis. In addition to providing an extensive analysis of the genes involved in the synthesis of the core region, we demonstrate that this organism has evidently diverged from the long-held archetype of core synthesis. Moreover, our data suggest that A. baumannii LOS assembly is important for cell division and likely intersects with the synthesis of the peptidoglycan cell wall, another essential component of the Gram-negative cell envelope. This connection between LOS and cell wall synthesis provides an intriguing foundation for a unique method of outer membrane biogenesis and cell envelope coordination.


Asunto(s)
Acinetobacter baumannii , Lipopolisacáridos , Lipopolisacáridos/metabolismo , Acinetobacter baumannii/genética , Antígenos O/metabolismo , Peptidoglicano/metabolismo
19.
J Bacteriol ; 206(1): e0036923, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38169298

RESUMEN

The bacterial peptidoglycan (PG) cell wall is remodeled during growth and division, releasing fragments called muropeptides. Muropeptides can be internalized and reused in a process called PG recycling. Escherichia coli is highly devoted to recycling muropeptides and is known to have at least two transporters, AmpG and OppBCDF, that import them into the cytoplasm. While studying mutants lacking AmpG, we unintentionally isolated mutations that led to the altered expression of a third transporter, CadB. CadB is normally upregulated under acidic pH conditions and is an antiporter for lysine and cadaverine. Here, we explored if CadB was altering PG recycling to assist in the absence of AmpG. Surprisingly, CadB overexpression was able to restore PG recycling when both AmpG and OppBCDF were absent. CadB was found to import freed PG peptides, a subpopulation of muropeptides, through a promiscuous activity. Altogether, our data support that CadB is a third transporter capable of contributing to PG recycling. IMPORTANCE Bacteria produce a rigid mesh cell wall. During growth, the cell wall is remodeled, which releases cell wall fragments. If released into the extracellular environment, cell wall fragments can trigger inflammation by the immune system of a host. Gastrointestinal bacteria, like Escherichia coli, have dedicated pathways to recycle almost all cell wall fragments they produce. E. coli contains two known recycling transporters, AmpG and Opp, that we previously showed are optimized for growth in different environments. Here, we identify that a third transporter, CadB, can also contribute to cell wall recycling. This work expands our understanding of cell wall recycling and highlights the dedication of organisms like E. coli to ensure high recycling in multiple growth environments.


Asunto(s)
Escherichia coli , Peptidoglicano , Peptidoglicano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Bacterias/metabolismo , Pared Celular/metabolismo
20.
Proc Natl Acad Sci U S A ; 121(5): e2314627121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252818

RESUMEN

The complement factor C5a is a core effector product of complement activation. C5a, acting through its receptors C5aR1 and C5aR2, exerts pleiotropic immunomodulatory functions in myeloid cells, which is vital for host defense against pathogens. Pattern-recognition receptors (PRRs) are similarly expressed by immune cells as detectors of pathogen-associated molecular patterns. Although there is evidence of cross talk between complement and PRR signaling pathways, knowledge of the full potential for C5a-PRR interaction is limited. In this study, we comprehensively investigated how C5a signaling through C5a receptors can modulate diverse PRR-mediated cytokine responses in human primary monocyte-derived macrophages and observed a powerful, concentration-dependent bidirectional effect of C5a on PRR activities. Unexpectedly, C5a synergized with Dectin-1, Mincle, and STING in macrophages to a much greater extent than TLRs. Notably, we also identified that selective Dectin-1 activation using depleted zymosan triggered macrophages to generate cell-intrinsic C5a, which acted on intracellular and cell surface C5aR1, to help sustain mitochondrial ROS generation, up-regulate TNFα production, and enhance fungal killing. This study adds further evidence to the holistic functions of C5a as a central immunomodulator and important orchestrator of pathogen sensing and killing by phagocytes.


Asunto(s)
Complemento C5a , Lectinas Tipo C , Macrófagos , Humanos , Complemento C5a/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Células Mieloides , Fagocitos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA